Gemini 2.5 Pro/Flashにおけるマルチモーダルトークン(画像のトークン数、動画のトークン数など)計算ガイド

Gemini 2.5 Pro/Flashにおけるマルチモーダルトークン(画像のトークン数、動画のトークン数など)計算ガイド
Photo by Towfiqu barbhuiya / Unsplash

こんにちは!

本日は、Gemini 2.5 ProおよびGemini 2.5 Flashを使用する際、料金計算やコンテキストウィンドウの管理において、トークン数の正確な把握は非常に重要です。本記事では、画像、動画、音声といったマルチモーダルコンテンツのトークン計算方法について詳しく解説します。

基本概念:トークンとは

Gemini 2.5シリーズにおいて、1トークンは約4文字に相当し、100トークンは約60-80語(英語)に相当します。すべての入力と出力はトークン単位で処理され、課金もトークン数に基づいて行われます。

Gemini 2.5シリーズのモデルと料金

利用可能なモデル

  • Gemini 2.5 Pro: 高度な推論能力を持つフラグシップモデル
  • Gemini 2.5 Flash: コスト効率に優れた高速モデル
  • Gemini 2.5 Flash Image: 画像生成専用モデル

コンテキストウィンドウ

両モデルとも1,000,000トークンの大規模なコンテキストウィンドウを提供します。

料金体系(プレビュー段階)

モデル 入力料金 出力料金
Gemini 2.5 Pro $4/100万トークン $20/100万トークン
Gemini 2.5 Flash $0.30/100万トークン $2.50/100万トークン
Gemini 2.5 Flash Image - 1画像あたり1290トークン(約$0.039)

画像のトークン計算

動的タイリングシステム

Gemini 2.5シリーズでは、画像サイズに応じた動的なタイリングシステムを採用しています。

小さい画像(384ピクセル以下)

  • 両方の寸法が384ピクセル以下の画像:258トークン固定

大きい画像(384ピクセル超)

  • 768×768ピクセルのタイルに分割
  • 各タイル:258トークン
  • 総トークン数 = タイル数 × 258

実装例

from google import genai

client = genai.Client()
prompt = "この画像について説明してください"

# 画像ファイルをアップロード
image_file = client.files.upload(file="sample_image.jpg")

# トークン数をカウント
token_count = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents=[prompt, image_file]
)
print(f"総トークン数: {token_count}")
# 例: 小さい画像の場合 → total_tokens: 263(テキスト5 + 画像258)

タイル数の計算方法

def calculate_image_tokens(width, height):
    if width <= 384 and height <= 384:
        return 258
    else:
        tiles_width = (width + 767) // 768
        tiles_height = (height + 767) // 768
        return tiles_width * tiles_height * 258

重要なポイント

  • File APIでアップロードした画像とインラインデータとして提供した画像で、トークン数は同じ
  • 画像の解像度に応じてトークン数が変動するため、事前の確認が重要

動画のトークン計算

固定レート方式

動画は時間ベースの固定レートでトークン化されます。

レート:1秒あたり263トークン

計算例

import time
from google import genai

client = genai.Client()
prompt = "この動画の内容を要約してください"

# 動画ファイルをアップロード
video_file = client.files.upload(file="sample_video.mp4")

# 動画処理の完了を待つ
while video_file.state.name != "ACTIVE":
    print("動画を処理中...")
    time.sleep(5)
    video_file = client.files.get(name=video_file.name)

# トークン数をカウント
token_count = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents=[prompt, video_file]
)
print(f"総トークン数: {token_count}")

動画長とトークン数の関係

動画の長さ トークン数
1秒 263
10秒 2,630
1分 15,780
5分 78,900

音声のトークン計算

固定レート方式

音声も時間ベースの固定レートでトークン化されます。

レート:1秒あたり32トークン

音声長とトークン数の関係

音声の長さ トークン数
1秒 32
10秒 320
1分 1,920
5分 9,600

実践的な使用例:使用メタデータの活用

generate_contentを呼び出した後、usage_metadataから詳細なトークン情報を取得できます。

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[prompt, media_file]
)

# 詳細なトークン情報を取得
metadata = response.usage_metadata
print(f"入力トークン: {metadata.prompt_token_count}")
print(f"出力トークン: {metadata.candidates_token_count}")
print(f"総トークン数: {metadata.total_token_count}")

# キャッシュトークンの取得(利用可能な場合)
if hasattr(metadata, 'cached_content_token_count'):
    print(f"キャッシュトークン: {metadata.cached_content_token_count}")

# 思考トークンの取得(思考モデルを使用している場合のみ)
if hasattr(metadata, 'thoughts_token_count'):
    print(f"思考トークン: {metadata.thoughts_token_count}")

コスト最適化のベストプラクティス

1. 事前のトークン数確認

# generate_contentを呼ぶ前にトークン数を確認
estimated_tokens = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents=contents
)
if estimated_tokens > threshold:
    # コンテンツを調整または警告を表示
    pass

2. 画像の最適化

  • 不必要に大きい画像は避ける(タイル数が増えるため)
  • 384ピクセル以下の画像は258トークン固定なので、小さいサムネイルで十分な場合は活用

3. 動画・音声の長さ管理

  • 動画:必要な部分のみを切り出して使用
  • 音声:動画より効率的(同じ1秒で32トークン vs 263トークン)

4. コンテキストキャッシング

Gemini 2.5シリーズでは、コンテキストキャッシングを活用することでトークン使用量を削減できます。キャッシュされたトークンは通常の半額で課金されます。

5. モデルの使い分け

  • 複雑なタスク:Gemini 2.5 Pro
  • 高速処理が必要な場合:Gemini 2.5 Flash
  • コスト重視:Gemini 2.5 Flash(Proの約1/7の入力コスト)

まとめ

Gemini 2.5 Pro/Flashのマルチモーダルトークン計算は以下のルールに従います。

  • 画像: 384px以下は258トークン、それ以上はタイル数×258トークン
  • 動画: 1秒あたり263トークン
  • 音声: 1秒あたり32トークン
  • コンテキストウィンドウ: 両モデルとも100万トークン

これらの計算方法を理解することで、APIの使用コストを予測し、コンテキストウィンドウを効率的に管理できます。特に大規模なマルチモーダルアプリケーションを開発する際は、事前のトークン数確認とコンテンツの最適化が重要です。

参考リンク

より詳細な情報については、Gemini API公式ドキュメントをご参照ください。

関連情報

・OpenAI GPTシリーズの画像トークン消費量計算

【OpenAI API】Vision対応LLMの画像トークン消費量計算法 2025年最新版
こんにちは! OpenAIのVision対応(つまり画像も入力できるLLM)モデルは、画像をトークンに変換する際に2つの異なる計算方式を採用しています。 最新のGPT-5系列やGPT-4.1系列では、従来のタイル方式とは異なるパッチベース方式が導入されました。この変更により、画像処理の効率性が大幅に向上し、より細かな制御が可能になっています。 2つの計算方式の違い OpenAIは現在、パッチベース方式とタイルベース方式という2つの計算方法を並行して運用しています。 パッチベース方式は、GPT-4.1-mini、GPT-4.1-nano、GPT-5-mini、GPT-5-nano、o4-miniといった新世代モデルで採用されています。この方式では画像を32×32ピクセルという非常に小さなパッチに分割します。従来のタイル方式が512×512ピクセルだったことを考えると、約256分の1のサイズで処理することになり、より精密な画像理解が可能になりました。 一方、GPT-4o、GPT-4.1、GPT-5、o1、o3などの主力モデルは引き続きタイルベース方式を採用しています。こちらは

・Anthropic Claudeシリーズの画像トークン消費量計算

Claude 4.5 APIにおける画像入力のトークン数計算と最適化ガイド
こんにちは! 今回は、Claude 4.5 sonnet/haiku、Claude 4.1 OpusをAPIからつかうときの画像のトークン数計算方法について詳しく解説します。 画像トークン数の計算方法 Claude 4.5 APIに送信する画像は、テキストと同様にトークンとしてカウントされ、料金計算の基礎となります。画像がAPIのサイズ制限内でリサイズ不要な場合、以下の簡単な計算式でトークン数を推定できます。 基本計算式 トークン数 = (横幅px × 縦幅px) ÷ 750 この計算式を使用することで、アップロード前にコストを予測し、必要に応じて画像を最適化することが可能になります。例えば、1000×1000ピクセルの画像は約1334トークンを消費し、Claude 4.5の料金体系では、画像1枚あたりのコストを事前に計算できます。1092×1092ピクセル(1.19メガピクセル)の画像であれば約1590トークンとなり、これを基準にバッチ処理のコストも見積もることが可能です。 画像サイズの制限と最適化 Claude 4.5 APIには画像サイズに関するいくつかの重要な

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部