[AI新規事業創出]Qualitegが考える、アイディア創出の5つのステップとは

アイディア創出についての悩みを持つ多くのクライアントへ、アイディア創出のための5つのステップを解説します。初めに、アイディアを創出する目的を明確に設定し、それに基づいてアイディアを創造、深堀、サービス設計、ビジネスモデル設計、そして評価の順に進めます。このプロセスは、単にアイディアを出すだけでなく、実際に事業として成立するかを検証し、事業責任者との事前合意に基づく目的に沿ったアイディアを選定することを目指します。

[AI新規事業創出]Qualitegが考える、アイディア創出の5つのステップとは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


改めてアイディア創出と言われても何から手を付けたらいいかわからないんだけど

そのようなお悩みをお抱えのクライアントが非常に多くご相談をいただきます。本日はアイディア創出ブレスト以外の手法も含めて、アイディア創出の5つのステップについて解説させていただきます。

自分は良い思い付きがある!アイディアマンだとおっしゃる方も多いのですが、アイディアを早急に出したいという気持ちをここでは少し抑えていただき、まず初めに

何のためにアイディアを創出するのか

という明確な目的を設定してください。

もちろん、新規事業を創出するためにアイディアを創出するんだよ

という声が聞こえてきそうですが、「事前に事業責任者と合意した、新規事業立ち上げの目的」に立ち戻りましょう。

本ブログで毎回例に挙げている電動自転車スタートアップを例とした場合、今回の新規事業開発の目的は

「新UX創出」として、「自社のターゲットユーザーである都市部で働くビジネスマンの生活充実度を向上させるサービスを市場導入することをゴールとする」

ですので、ここから離れないように、あくまでも、新規事業を創出するゴールはここであるということを念頭に置いてください。

真のイノベーションには、それを担う人材の力が不可欠です。株式会社Qualitegの Innovation-Crossは、共創による価値創出とともに、企業内のイノベーション人材育成も支援するプログラム。アイデアワークショップやハッカソン企画を通じて社員の創造性と協働力を引き出し、オープンイノベーションやパートナー開拓の実践を通じて外部連携のスキルを養成します。

企業の現状分析をもとに、「自社だけでは難しい」革新創出の戦略を策定し、その実行プロセスを通じて人材の成長も促進。経験豊富な専門コンサルタントが、革新的な価値創造と人材育成の好循環を設計し、企業の持続的なイノベーション力を構築します。共創で創るのは、価値と人の未来です。

Qualitegが提唱するアイディア創出のための5つのステップとは

アイディアは出して終わりではありません。多くの方は、たくさんアイディアを出した後に
部長の鶴の一声などで決定されてしまう方が多く見受けられます。

その方式でもうまく進む場合もあるのですが、年度が替わり上司が変わって意見も変わる、、などでせっかく進めていた新規事業のテーマについて時間がたって差し戻しになってしまうケースが多いというのが、残念ながら私がコンサルティングをさせていただいてよく見る光景であります。

そのような壁に当たらないようにするために、Qualitegでは、以下の5ステップでアイディア創出すべきとお話しさせていただいております。

  1. アイディア創造(発散)
  2. アイディア深堀(収束)
  3. サービス設計
  4. ビジネスモデル設計
  5. アイディア評価(収束)
assorted-color pencil

まず初めに行うことは、皆さまお待ちかねの 「アイディア創造」 です。

このフェーズでは、とにかくたくさんアイディアを作ることが必要です。ブレインストーミングをされる方が非常に多く他の手法をご存じない方も多いのですが、詳細については次のコラムでご説明します。

手法はともかくこのフェーズでは ==「自由に多くのアイディアを出す」==ことに集中してください。企画だけではなく、デザイナー、エンジニアなど部署を超えて多くの方に参加していただき、Diversityを持たせた方がより幅広いアイディアが創出されます。

また、昨今では生成AIを活用してアイディアを創出するケースも多いですが、私たちもこの手法を推奨しています。

アイディアがたくさん出たら次は 「アイディアの深堀」 です。アイディアを出した段階では単なるキーワードベースのものが多く、サービス内容の具体的なイメージがわかないので、具体性を増すように深堀をすることを推奨しています。

アイディアの深堀が終われば、次は 「サービス設計」 です。ここで先ほど出たアイディアをどのようなサービスにすべきか考えます。技術的実現可能性や、サービス開発にあたって出てきた課題を検討したり、ユーザーのニーズがあるかなども含めて、簡単なユースケースが語れる程度にサービス案をまとめます。

サービスイメージがまとまりましたら、「ビジネスモデル設計」 をしましょう。せっかくニーズがありそう!と思ったアイディアもマネタイズができなければ、事業化できません。
顧客に対する本質的な価値は何か、その価値をどのように自社が提供するのか、収益源、コスト構造に加えて、サービス開発や市場導入のためのパートナー企業の必要性などもこのフェーズでは考えます。

最後に行うべきは 「アイディア評価」 です。どのアイディアを採用すべきか、事業責任者の方の顔色をうかがって決めるという方もいらっしゃるのですが、これから世に出していくサービスの潜在的な成功を事前に定義し評価するために、評価基準を用いて優劣を判断して、アイディアを決定します。

きちんと、評価基準が明確で、合理的に判断されていれば、あとで「ちゃぶ台返し」に合う確率もかなり減らせることでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部