[AI新規事業創出]Qualitegが考える、アイディア創出の5つのステップとは

アイディア創出についての悩みを持つ多くのクライアントへ、アイディア創出のための5つのステップを解説します。初めに、アイディアを創出する目的を明確に設定し、それに基づいてアイディアを創造、深堀、サービス設計、ビジネスモデル設計、そして評価の順に進めます。このプロセスは、単にアイディアを出すだけでなく、実際に事業として成立するかを検証し、事業責任者との事前合意に基づく目的に沿ったアイディアを選定することを目指します。

[AI新規事業創出]Qualitegが考える、アイディア創出の5つのステップとは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


改めてアイディア創出と言われても何から手を付けたらいいかわからないんだけど

そのようなお悩みをお抱えのクライアントが非常に多くご相談をいただきます。本日はアイディア創出ブレスト以外の手法も含めて、アイディア創出の5つのステップについて解説させていただきます。

自分は良い思い付きがある!アイディアマンだとおっしゃる方も多いのですが、アイディアを早急に出したいという気持ちをここでは少し抑えていただき、まず初めに

何のためにアイディアを創出するのか

という明確な目的を設定してください。

もちろん、新規事業を創出するためにアイディアを創出するんだよ

という声が聞こえてきそうですが、「事前に事業責任者と合意した、新規事業立ち上げの目的」に立ち戻りましょう。

本ブログで毎回例に挙げている電動自転車スタートアップを例とした場合、今回の新規事業開発の目的は

「新UX創出」として、「自社のターゲットユーザーである都市部で働くビジネスマンの生活充実度を向上させるサービスを市場導入することをゴールとする」

ですので、ここから離れないように、あくまでも、新規事業を創出するゴールはここであるということを念頭に置いてください。

真のイノベーションには、それを担う人材の力が不可欠です。株式会社Qualitegの Innovation-Crossは、共創による価値創出とともに、企業内のイノベーション人材育成も支援するプログラム。アイデアワークショップやハッカソン企画を通じて社員の創造性と協働力を引き出し、オープンイノベーションやパートナー開拓の実践を通じて外部連携のスキルを養成します。

企業の現状分析をもとに、「自社だけでは難しい」革新創出の戦略を策定し、その実行プロセスを通じて人材の成長も促進。経験豊富な専門コンサルタントが、革新的な価値創造と人材育成の好循環を設計し、企業の持続的なイノベーション力を構築します。共創で創るのは、価値と人の未来です。

Qualitegが提唱するアイディア創出のための5つのステップとは

アイディアは出して終わりではありません。多くの方は、たくさんアイディアを出した後に
部長の鶴の一声などで決定されてしまう方が多く見受けられます。

その方式でもうまく進む場合もあるのですが、年度が替わり上司が変わって意見も変わる、、などでせっかく進めていた新規事業のテーマについて時間がたって差し戻しになってしまうケースが多いというのが、残念ながら私がコンサルティングをさせていただいてよく見る光景であります。

そのような壁に当たらないようにするために、Qualitegでは、以下の5ステップでアイディア創出すべきとお話しさせていただいております。

  1. アイディア創造(発散)
  2. アイディア深堀(収束)
  3. サービス設計
  4. ビジネスモデル設計
  5. アイディア評価(収束)
assorted-color pencil

まず初めに行うことは、皆さまお待ちかねの 「アイディア創造」 です。

このフェーズでは、とにかくたくさんアイディアを作ることが必要です。ブレインストーミングをされる方が非常に多く他の手法をご存じない方も多いのですが、詳細については次のコラムでご説明します。

手法はともかくこのフェーズでは ==「自由に多くのアイディアを出す」==ことに集中してください。企画だけではなく、デザイナー、エンジニアなど部署を超えて多くの方に参加していただき、Diversityを持たせた方がより幅広いアイディアが創出されます。

また、昨今では生成AIを活用してアイディアを創出するケースも多いですが、私たちもこの手法を推奨しています。

アイディアがたくさん出たら次は 「アイディアの深堀」 です。アイディアを出した段階では単なるキーワードベースのものが多く、サービス内容の具体的なイメージがわかないので、具体性を増すように深堀をすることを推奨しています。

アイディアの深堀が終われば、次は 「サービス設計」 です。ここで先ほど出たアイディアをどのようなサービスにすべきか考えます。技術的実現可能性や、サービス開発にあたって出てきた課題を検討したり、ユーザーのニーズがあるかなども含めて、簡単なユースケースが語れる程度にサービス案をまとめます。

サービスイメージがまとまりましたら、「ビジネスモデル設計」 をしましょう。せっかくニーズがありそう!と思ったアイディアもマネタイズができなければ、事業化できません。
顧客に対する本質的な価値は何か、その価値をどのように自社が提供するのか、収益源、コスト構造に加えて、サービス開発や市場導入のためのパートナー企業の必要性などもこのフェーズでは考えます。

最後に行うべきは 「アイディア評価」 です。どのアイディアを採用すべきか、事業責任者の方の顔色をうかがって決めるという方もいらっしゃるのですが、これから世に出していくサービスの潜在的な成功を事前に定義し評価するために、評価基準を用いて優劣を判断して、アイディアを決定します。

きちんと、評価基準が明確で、合理的に判断されていれば、あとで「ちゃぶ台返し」に合う確率もかなり減らせることでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング