[AI新規事業創出] Qualitegが考える、アイディア創造でやるべきこと、やってはいけないこと

私たちQualitegは、AI技術を活用したサービス開発を通じて、アイディア創造が新たな価値を生み出す基礎であると考えています。アイディア創造では、多様な視点を受け入れ、オープンマインドを持ち続けることが重要です。また、生成AIを活用しながら、異なる背景を持つチームメンバーからの積極的な参加を促します。早期のプロトタイピングと検証も推奨し、アイディアに固執せず、広い選択肢から最適なものを選び出す柔軟性を持つことが、成功への鍵です。

[AI新規事業創出] Qualitegが考える、アイディア創造でやるべきこと、やってはいけないこと

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


AI技術を活用したサービス開発を常に行っている、私たちQualitegは、アイディア創造は新たな価値を生み出す基礎であると考えています。今日は、アイディア創造の過程で実践すべきことと避けるべきことについて、具体的なアドバイスを共有させていただきたいと思います。

アイディア創造でやるべきこと

1. 多様な視点を受け入れる
アイディア創造は、多様な意見と多くの視点からの集めることが重要です。年齢、性別、バックグラウンドや職種など 異なる背景を持つチームメンバーに積極的に参加してもらうことで、新しい視点と斬新なアイディアが生まれます。

アイディア出しの段階ではその人が持っている知識量などは気にせず、アイディア出しの前に全員にリサーチ情報などを提供して高品質のインプットを行った後で、全員でアイディア創出をしましょう。

2. オープンマインドでアイディアを創造し続ける
アイディアブレストをする場合

「それはA社が既にやってるよね」

「そのアイディアは昔、僕も考えたけどやめたんだ」

などと、知識をひけらかしたい人ほど、批判的なコメントをする傾向が強く 、そのため、知識量が少ない人は委縮して発言をしなくなってしまいます。

初期段階での批判は創造的プロセスを妨げてしまい、チームの利益を損なってしまうことが多いので、チーム全員の創造性をステップアップさせるためにも、批判的な意見は出さないようにしましょう。

3.生成AIを活用する
各個人が保有している知識以上のものを持っている 生成AI を活用しましょう。
アイディア創造においては、生成AIの活用も極めて効果的です。

生成AIを活用することで、従来の枠を超えたアイディアや新しい視点が得られます。 AIは大量のデータから独自の提案を生成し、思いもよらない組み合わせや解決策を提示することが可能ですから、生成AIが出してきたアイディアをそのまま利用してもいいですが、そこに人間の知恵をエッセンスとして加えて、多様かつ斬新なアイディア創出を実行しましょう。

4. 早くプロトタイピングを行い検証する
ここは業種にもより、メーカーなどのコンサルティングをさせていただいている場合、皆さまアイディアが出た瞬間に簡易版のプロトを開発されるケースが多く、プロトを自分たちで見て、そのアイディアの良さを実感して次のステップに進まれる方が多いです。

(過去にはアイディアブレストにプロトをもってきてアイディアを発表される凄腕エンジニアの方もいらっしゃいました!)

メーカーでなくても、SaaSなどを検討される場合は、UIデザインのモックアップなどを作ったり、カスタマージャーニーを設計することで、ユーザーの利用イメージを可視化して、チームで認識合わせをして、確信を持てた状態で次のステップに進む ことをお勧めします。

このタイミングで企画担当だけで行うのもNGです。本当に作れるかわからないけど、妄想であったらいいなと思ったものをそのまま進めてしまっても、実際作れなくて企画がDropになってしまうケースが多いようです。

技術的実現可能性や、市場導入の実現可能性を早期段階で本質的に見極めておく必要がある ので、可能であればユーザビリティだけではなく、自社でできそうか、他社に依頼したらできそうかなどの感触を確認できる程度のフィジビリティスタディーもこの段階でできるとよいですね。

man walking beside graffiti wall

変化の激しい現代ビジネス環境において、持続的な成長には継続的なイノベーションが不可欠です。株式会社Qualitegの Innovation-Crossは、企業の長期的成長を見据えた共創支援プログラム。現状分析に基づく精緻な戦略策定から、外部との協業による革新創出の実行支援まで、包括的なサポートを提供します。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多様なアプローチで「自社だけでは難しい」イノベーションを実現し、企業の競争優位性と持続可能な成長基盤を構築。経験豊富な専門コンサルタントが伴走し、短期的な成果と長期的な成長を両立する革新的な価値創造を実現します。今日の成功と明日の成長を、共創の力で。

アイディア創造でやってはいけないこと

1. 一つのアイディアに固執しない
アイディア創造のプロセスにおいて、柔軟性を保つことは非常に重要です。 創造的な思考では、多くの可能性を探求し、様々な角度からアイディアを評価することが求められます。

よくお話を聞くのが、

「上司が出したアイディアを忖度してそれの派生案だけで考えてしまう」

というケースです。会社生活において、上司にいい顔したいという気持ちもわからなくもないですが、よくないものにお世辞で「いいね」と言っても、後で売れないサービスを作ってしまって困るのは、その上司ですから、良いと思わないなら、代替案を出すべきでしょう。

特定のアイディアに固執しすぎると、他の有望な選択肢や、もっと効果的な解決策を見落としてしまうリスクがあります。時間もその特定のアイディアだけに使ってしまってはもったいないですよね。

あくまでも幅広い選択肢の中から、後で最適なものを選び出すことがKey なので、この段階では一つのアイディアに固執せずに、幅広く多くのアイディアを出すようにしましょう。

2.その場ですぐにアイディアを判断しない
アイディアをその場ですぐに良し悪しを判断するのは避けましょう。初期のアイディアはキーワードベースでユースケースなど特定できていないのに、その場で、

「それはどういうこと?おかしいよね」

「それって既にB社がやってるじゃん」

などと言って、アイディアを判断したがる人が非常に多いです。

メルカリはスタートアップから誕生しましたが、もしも大企業だったら

「それって、ヤフオクと一緒じゃん」

って言われてしまって、この世に生まれなかったかもしれません。

将来何億円と売り上げを上げるであろうサービスを数秒で考えられるというケースもなかなかないでしょうから、アイディアは後でしっかり練り上げ、時間をかけてアップデートし、磨きこむ必要がある のです。

また、キーワードベースで判断してしまい、例えば
そのサービスの類似サービスを他社がやっていたとしても、それは市場性がある
ということですし、

ユーザー体験の良し悪しでサービス内容は異なるように見えるというのが、私たちQualitegの考えです。

最初に思いついた単純なアイディアが議論し続けることで革新的な解決案となるサービスになることも非常に多いです。そのため、このフェーズでアイディアをすぐに判断することはお勧めできません。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部