[AI新規事業創出] Qualitegが考える、アイディア創造でやるべきこと、やってはいけないこと

私たちQualitegは、AI技術を活用したサービス開発を通じて、アイディア創造が新たな価値を生み出す基礎であると考えています。アイディア創造では、多様な視点を受け入れ、オープンマインドを持ち続けることが重要です。また、生成AIを活用しながら、異なる背景を持つチームメンバーからの積極的な参加を促します。早期のプロトタイピングと検証も推奨し、アイディアに固執せず、広い選択肢から最適なものを選び出す柔軟性を持つことが、成功への鍵です。

[AI新規事業創出] Qualitegが考える、アイディア創造でやるべきこと、やってはいけないこと

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


AI技術を活用したサービス開発を常に行っている、私たちQualitegは、アイディア創造は新たな価値を生み出す基礎であると考えています。今日は、アイディア創造の過程で実践すべきことと避けるべきことについて、具体的なアドバイスを共有させていただきたいと思います。

アイディア創造でやるべきこと

1. 多様な視点を受け入れる
アイディア創造は、多様な意見と多くの視点からの集めることが重要です。年齢、性別、バックグラウンドや職種など 異なる背景を持つチームメンバーに積極的に参加してもらうことで、新しい視点と斬新なアイディアが生まれます。

アイディア出しの段階ではその人が持っている知識量などは気にせず、アイディア出しの前に全員にリサーチ情報などを提供して高品質のインプットを行った後で、全員でアイディア創出をしましょう。

2. オープンマインドでアイディアを創造し続ける
アイディアブレストをする場合

「それはA社が既にやってるよね」

「そのアイディアは昔、僕も考えたけどやめたんだ」

などと、知識をひけらかしたい人ほど、批判的なコメントをする傾向が強く 、そのため、知識量が少ない人は委縮して発言をしなくなってしまいます。

初期段階での批判は創造的プロセスを妨げてしまい、チームの利益を損なってしまうことが多いので、チーム全員の創造性をステップアップさせるためにも、批判的な意見は出さないようにしましょう。

3.生成AIを活用する
各個人が保有している知識以上のものを持っている 生成AI を活用しましょう。
アイディア創造においては、生成AIの活用も極めて効果的です。

生成AIを活用することで、従来の枠を超えたアイディアや新しい視点が得られます。 AIは大量のデータから独自の提案を生成し、思いもよらない組み合わせや解決策を提示することが可能ですから、生成AIが出してきたアイディアをそのまま利用してもいいですが、そこに人間の知恵をエッセンスとして加えて、多様かつ斬新なアイディア創出を実行しましょう。

4. 早くプロトタイピングを行い検証する
ここは業種にもより、メーカーなどのコンサルティングをさせていただいている場合、皆さまアイディアが出た瞬間に簡易版のプロトを開発されるケースが多く、プロトを自分たちで見て、そのアイディアの良さを実感して次のステップに進まれる方が多いです。

(過去にはアイディアブレストにプロトをもってきてアイディアを発表される凄腕エンジニアの方もいらっしゃいました!)

メーカーでなくても、SaaSなどを検討される場合は、UIデザインのモックアップなどを作ったり、カスタマージャーニーを設計することで、ユーザーの利用イメージを可視化して、チームで認識合わせをして、確信を持てた状態で次のステップに進む ことをお勧めします。

このタイミングで企画担当だけで行うのもNGです。本当に作れるかわからないけど、妄想であったらいいなと思ったものをそのまま進めてしまっても、実際作れなくて企画がDropになってしまうケースが多いようです。

技術的実現可能性や、市場導入の実現可能性を早期段階で本質的に見極めておく必要がある ので、可能であればユーザビリティだけではなく、自社でできそうか、他社に依頼したらできそうかなどの感触を確認できる程度のフィジビリティスタディーもこの段階でできるとよいですね。

man walking beside graffiti wall

アイディア創造でやってはいけないこと

1. 一つのアイディアに固執しない
アイディア創造のプロセスにおいて、柔軟性を保つことは非常に重要です。 創造的な思考では、多くの可能性を探求し、様々な角度からアイディアを評価することが求められます。

よくお話を聞くのが、

「上司が出したアイディアを忖度してそれの派生案だけで考えてしまう」

というケースです。会社生活において、上司にいい顔したいという気持ちもわからなくもないですが、よくないものにお世辞で「いいね」と言っても、後で売れないサービスを作ってしまって困るのは、その上司ですから、良いと思わないなら、代替案を出すべきでしょう。

特定のアイディアに固執しすぎると、他の有望な選択肢や、もっと効果的な解決策を見落としてしまうリスクがあります。時間もその特定のアイディアだけに使ってしまってはもったいないですよね。

あくまでも幅広い選択肢の中から、後で最適なものを選び出すことがKey なので、この段階では一つのアイディアに固執せずに、幅広く多くのアイディアを出すようにしましょう。

2.その場ですぐにアイディアを判断しない
アイディアをその場ですぐに良し悪しを判断するのは避けましょう。初期のアイディアはキーワードベースでユースケースなど特定できていないのに、その場で、

「それはどういうこと?おかしいよね」

「それって既にB社がやってるじゃん」

などと言って、アイディアを判断したがる人が非常に多いです。

メルカリはスタートアップから誕生しましたが、もしも大企業だったら

「それって、ヤフオクと一緒じゃん」

って言われてしまって、この世に生まれなかったかもしれません。

将来何億円と売り上げを上げるであろうサービスを数秒で考えられるというケースもなかなかないでしょうから、アイディアは後でしっかり練り上げ、時間をかけてアップデートし、磨きこむ必要がある のです。

また、キーワードベースで判断してしまい、例えば
そのサービスの類似サービスを他社がやっていたとしても、それは市場性がある
ということですし、

ユーザー体験の良し悪しでサービス内容は異なるように見えるというのが、私たちQualitegの考えです。

最初に思いついた単純なアイディアが議論し続けることで革新的な解決案となるサービスになることも非常に多いです。そのため、このフェーズでアイディアをすぐに判断することはお勧めできません。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部