[AI新規事業創出] Qualitegが考える、アイディア創造でやるべきこと、やってはいけないこと

私たちQualitegは、AI技術を活用したサービス開発を通じて、アイディア創造が新たな価値を生み出す基礎であると考えています。アイディア創造では、多様な視点を受け入れ、オープンマインドを持ち続けることが重要です。また、生成AIを活用しながら、異なる背景を持つチームメンバーからの積極的な参加を促します。早期のプロトタイピングと検証も推奨し、アイディアに固執せず、広い選択肢から最適なものを選び出す柔軟性を持つことが、成功への鍵です。

[AI新規事業創出] Qualitegが考える、アイディア創造でやるべきこと、やってはいけないこと

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


AI技術を活用したサービス開発を常に行っている、私たちQualitegは、アイディア創造は新たな価値を生み出す基礎であると考えています。今日は、アイディア創造の過程で実践すべきことと避けるべきことについて、具体的なアドバイスを共有させていただきたいと思います。

アイディア創造でやるべきこと

1. 多様な視点を受け入れる
アイディア創造は、多様な意見と多くの視点からの集めることが重要です。年齢、性別、バックグラウンドや職種など 異なる背景を持つチームメンバーに積極的に参加してもらうことで、新しい視点と斬新なアイディアが生まれます。

アイディア出しの段階ではその人が持っている知識量などは気にせず、アイディア出しの前に全員にリサーチ情報などを提供して高品質のインプットを行った後で、全員でアイディア創出をしましょう。

2. オープンマインドでアイディアを創造し続ける
アイディアブレストをする場合

「それはA社が既にやってるよね」

「そのアイディアは昔、僕も考えたけどやめたんだ」

などと、知識をひけらかしたい人ほど、批判的なコメントをする傾向が強く 、そのため、知識量が少ない人は委縮して発言をしなくなってしまいます。

初期段階での批判は創造的プロセスを妨げてしまい、チームの利益を損なってしまうことが多いので、チーム全員の創造性をステップアップさせるためにも、批判的な意見は出さないようにしましょう。

3.生成AIを活用する
各個人が保有している知識以上のものを持っている 生成AI を活用しましょう。
アイディア創造においては、生成AIの活用も極めて効果的です。

生成AIを活用することで、従来の枠を超えたアイディアや新しい視点が得られます。 AIは大量のデータから独自の提案を生成し、思いもよらない組み合わせや解決策を提示することが可能ですから、生成AIが出してきたアイディアをそのまま利用してもいいですが、そこに人間の知恵をエッセンスとして加えて、多様かつ斬新なアイディア創出を実行しましょう。

4. 早くプロトタイピングを行い検証する
ここは業種にもより、メーカーなどのコンサルティングをさせていただいている場合、皆さまアイディアが出た瞬間に簡易版のプロトを開発されるケースが多く、プロトを自分たちで見て、そのアイディアの良さを実感して次のステップに進まれる方が多いです。

(過去にはアイディアブレストにプロトをもってきてアイディアを発表される凄腕エンジニアの方もいらっしゃいました!)

メーカーでなくても、SaaSなどを検討される場合は、UIデザインのモックアップなどを作ったり、カスタマージャーニーを設計することで、ユーザーの利用イメージを可視化して、チームで認識合わせをして、確信を持てた状態で次のステップに進む ことをお勧めします。

このタイミングで企画担当だけで行うのもNGです。本当に作れるかわからないけど、妄想であったらいいなと思ったものをそのまま進めてしまっても、実際作れなくて企画がDropになってしまうケースが多いようです。

技術的実現可能性や、市場導入の実現可能性を早期段階で本質的に見極めておく必要がある ので、可能であればユーザビリティだけではなく、自社でできそうか、他社に依頼したらできそうかなどの感触を確認できる程度のフィジビリティスタディーもこの段階でできるとよいですね。

man walking beside graffiti wall

アイディア創造でやってはいけないこと

1. 一つのアイディアに固執しない
アイディア創造のプロセスにおいて、柔軟性を保つことは非常に重要です。 創造的な思考では、多くの可能性を探求し、様々な角度からアイディアを評価することが求められます。

よくお話を聞くのが、

「上司が出したアイディアを忖度してそれの派生案だけで考えてしまう」

というケースです。会社生活において、上司にいい顔したいという気持ちもわからなくもないですが、よくないものにお世辞で「いいね」と言っても、後で売れないサービスを作ってしまって困るのは、その上司ですから、良いと思わないなら、代替案を出すべきでしょう。

特定のアイディアに固執しすぎると、他の有望な選択肢や、もっと効果的な解決策を見落としてしまうリスクがあります。時間もその特定のアイディアだけに使ってしまってはもったいないですよね。

あくまでも幅広い選択肢の中から、後で最適なものを選び出すことがKey なので、この段階では一つのアイディアに固執せずに、幅広く多くのアイディアを出すようにしましょう。

2.その場ですぐにアイディアを判断しない
アイディアをその場ですぐに良し悪しを判断するのは避けましょう。初期のアイディアはキーワードベースでユースケースなど特定できていないのに、その場で、

「それはどういうこと?おかしいよね」

「それって既にB社がやってるじゃん」

などと言って、アイディアを判断したがる人が非常に多いです。

メルカリはスタートアップから誕生しましたが、もしも大企業だったら

「それって、ヤフオクと一緒じゃん」

って言われてしまって、この世に生まれなかったかもしれません。

将来何億円と売り上げを上げるであろうサービスを数秒で考えられるというケースもなかなかないでしょうから、アイディアは後でしっかり練り上げ、時間をかけてアップデートし、磨きこむ必要がある のです。

また、キーワードベースで判断してしまい、例えば
そのサービスの類似サービスを他社がやっていたとしても、それは市場性がある
ということですし、

ユーザー体験の良し悪しでサービス内容は異なるように見えるというのが、私たちQualitegの考えです。

最初に思いついた単純なアイディアが議論し続けることで革新的な解決案となるサービスになることも非常に多いです。そのため、このフェーズでアイディアをすぐに判断することはお勧めできません。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation
Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

何度か、WSL にいろんなバージョンのLinux を入れたり消したりしたときに遭遇した現象です ユーザー設定の読み込み中にエラーが発生しました 無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。"icon" を設定するときは、値が画像への有効なファイルパスとなっていることをご確認ください。 が発生するときの原因と対象法のレポートです 原因 使われなくなったゾンビ・プロファイルがWindows Terminal (のキャッシュ)に残り続ける 対処法 このメッセージを解消するには、いったん、プロファイルをリセットする必要がありました。 ※既存プロファイル設定が消える場合があるので留意すること Step1 Windows Terminal を落とす Windows Terminal をいったんすべて落とす Step2 settings.json を消す エクスプローラーで settings.json のあるフォルダに移動しファイルを削除する %LOCALAPPDATA%\Packages\Micros

By Qualiteg プロダクト開発部