Qualitegが考える、アイディア深堀でやるべきこと4選

Qualitegが考える、アイディア深堀でやるべきこと4選

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


革新的な製品やサービスを生み出すためには、優れたアイディアの創出と、そのアイディアを徹底的に深堀りすることが不可欠です。Qualitegでは、ユーザー中心のデザイン思考と、データに基づいた分析を組み合わせることで、アイディアを最大限に活かせるよう支援しています。

本記事では、Qualitegが考えるアイディア深堀で「やるべきこと」と「やってはいけないこと」を具体的に解説し、より効果的な深堀の方法を紹介します。

1. ユーザーニーズを徹底的に理解する

アイディアの出発点は、常にユーザーニーズです。ターゲットとなるユーザーは誰なのか、彼らの抱える課題は何なのか、どのような解決策を求めているのかを深く理解することが、アイディアを成功に導くための第一歩です。

大手企業様ですと、ユーザーニーズの把握を面倒くさがれる方がよくいらっしゃるような印象です。

新規事業開発に予算がかけられる企業様は先に担当者の方のイメージ先行で本番レベルに近いプロトアプリを作られてしまってる方が多く、それをもってユーザー向けにインタビューなさる場合もあります。

初期仮説の段階では後でアプリ自体を変更することを視野に入れるべきです。っそのため、時間もお金もかけて開発するきちんと動作するアプリではなくて、ペーパープロトをご準備されるのが良いと思い、私たちQualitegではペーパープロトやコールドモック状態でのユーザーテスト実施を強くお勧めしています!(事前に結構アプリを作りこんでしまうとあとで替えたくなくなってしまいますしね。。。)

  • ユーザーインタビューの実施:
    ターゲットユーザーに直接インタビューを行い、彼らのニーズや課題、潜在的な欲求を深く理解します。
  • ペルソナの作成:
    インタビュー結果などを元に、ユーザー像を具体的に描き出し、より深く理解を深めます。
  • カスタマージャーニーマップの作成:
    ユーザーが製品やサービスとどのように接点を持つのか、その過程における感情や行動を可視化します。

株式会社Qualitegの Innovation-Crossは、革新創出のプロセスを明確化する共創支援プログラムです。私たちのアプローチは、4つのステップで構成されています。まず企業の現状を徹底分析し、次に外部との協業による価値創出の戦略を策定。さらに具体的なロードマップとKPIを設定し、最後に実行を強力に支援します。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多彩なサービスメニューを通じて、革新創出の各段階を確実に推進。経験豊富な専門コンサルタントが伴走し、「自社内だけでは難しい」革新を、外部との協業によって実現する道筋を明確に示します。

2. 多様な視点を取り入れる

アイディアを深堀りする際には、自分自身の視点だけでなく、多様な視点を取り入れることが重要です。異なるバックグラウンドや専門性を持つ人々から意見を聞くことで、新たな発見や気づきを得ることができます。

ダイバーシティの観点は米国で用いられて日本にも取り入れられたという流れから、多民族というイメージで捉えられがちです。よくクライアント企業からも、どうやって多様な視点を取り入れたらいいのかとご相談を受けることも多いです。

  • ブレインストーミングの実施:
    多様なメンバーを集めて、自由な発想でアイディアを出し合います。
  • 専門家へのヒアリング:
    特定の分野に精通した専門家から意見を聞き、アイディアの feasibility や実現可能性を検証します。
  • 競合分析の実施:
    競合となる製品やサービスを分析し、自社のアイディアとの差別化ポイントや改善点を明確化します。

これらのような活動をしていただくことで、様々な視点を持つこともできますし、企業で行っていただく際は、部署が違う方や職種や役割が違う方、だいたい8名くらいの方に集まって頂くのがよいでしょう。企画担当、マーケ担当、エンジニア担当、管理担当、デザイナーなど職種が違うだけでも発想の源が異なるケースが多いので、深堀の際に思わぬホームランの意見が出てきたりしますので、おすすめいたします。

3. プロトタイプを作成し、検証する

アイディアを具体化し、ユーザーに実際に体験してもらうために、プロトタイプを作成します。プロトタイプは、初期段階では紙や粘土などで作られた簡易的なものでも構いません。重要なのは、ユーザーからのフィードバックを得て、アイディアを改善していくことです。

前のパートでもお話ししましたが、このペーパープロトで作りこみすぎると愛着が沸いて後で替えたくなくなる、燃え尽きてしまうということもあり本末転倒になるため、あくまでもペーパープロトはカジュアルなもの、内容がわかる程度の表現ができていればOKと思ってみてくださいね。

  • ペーパープロトタイピング:
    紙やペンを使って、アイディアを視覚的に表現します。
  • デジタルプロトタイピング:
    デザインツールなどを用いて、よりインタラクティブなプロトタイプを作成します。
  • ユーザーテストの実施:
    プロトタイプを用いてユーザーテストを行い、使い勝手や課題点を検証します。

4. データに基づいた意思決定を行う

アイディア深堀の過程では、ユーザーインタビューやプロトタイプテストなどを通じて、様々なデータが得られます。これらのデータを分析し、客観的な視点でアイディアを評価することが重要です。

企画経験が浅い方やちょっとメンタル弱めの方は、ユーザーインタビューでとにかくお客様の「いいね」を欲しがりますw。

しかし、「お世辞のいいね」をもらって、それを何千万、何億円も投資する新規事業の判断にしてよいのか、今一度冷静になって頂きたい!と私は(心を鬼にして)ご支援の際にアドバイスをさせていただいています。

ユーザーテストでの定性データももちろんですが、アンケートを利用した定量分析などもきちんと行うことで、後で手戻りが発生しないように今のうちに最適解を見つけるようにしましょう。

  • 定量データの分析:
    アクセス数やコンバージョン率などの数値データを分析し、アイディアの効果を測定します。
  • 定性データの分析:
    ユーザーインタビューやアンケートで得られた意見や感想を分析し、ユーザーのニーズや課題を深く理解します。
  • A/Bテストの実施:
    異なるバージョンのプロトタイプを比較し、より効果的なデザインや機能を検証します。

ひとつ、誤解してほしくないのが、あなたの初期仮説がちょっと合っていなかっただけで、誰も「企画の才能がない」なんて思わないんです。ということを声を大にしてお伝えしたいです。

むしろここで自分の企画案を冷静に分析して、客観的に変更すべき点を自己判断できるひとことさ真の企画マンだと私は思いますし、そのようなプロの企画担当者の育成のご支援を自分のミッションと思ってさせていただいております♪

まとめ

これらの「やるべきこと」を実践することで、Qualitegはアイディアの深堀りを効果的に行い、革新的なソリューションを生み出すご支援をしております。

日本企業のクライアントのみなさまですと、最初はちょっと苦手意識があるかもしれませんが、オープンマインドを保ち、多様な意見を取り入れることで、従来の枠組みにとらわれない新しい発想が生まれやすくなります。「なぜ?」を繰り返し問いかけ、ビジュアル化を活用することで、アイディアの本質に迫り、複雑な概念を整理することができます。

また、プロトタイピングとフィードバックの活用は、アイディアを具体化し、早期に検証する機会を提供します。これにより、実現可能性の高いアイディアを効率的に選別し、改善することが可能になります。

さらに、創造的思考のための時間と空間を確保することで、社員が日常業務から離れ、集中してアイディアを深堀りする環境を整えています。

これらの取り組みを通じて、Qualitegは継続的にイノベーションを推進し、市場のニーズに応える革新的な製品やサービスを開発しています。アイディア創出のご支援もしておりますが、プロト開発のご依頼も受けておりますので、ぜひご連絡いただければと思います。

一緒に新規事業を創出して日本を盛り上げていきましょう!


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング