Qualitegが考える、アイディア深堀でやるべきこと4選

Qualitegが考える、アイディア深堀でやるべきこと4選

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


革新的な製品やサービスを生み出すためには、優れたアイディアの創出と、そのアイディアを徹底的に深堀りすることが不可欠です。Qualitegでは、ユーザー中心のデザイン思考と、データに基づいた分析を組み合わせることで、アイディアを最大限に活かせるよう支援しています。

本記事では、Qualitegが考えるアイディア深堀で「やるべきこと」と「やってはいけないこと」を具体的に解説し、より効果的な深堀の方法を紹介します。

1. ユーザーニーズを徹底的に理解する

アイディアの出発点は、常にユーザーニーズです。ターゲットとなるユーザーは誰なのか、彼らの抱える課題は何なのか、どのような解決策を求めているのかを深く理解することが、アイディアを成功に導くための第一歩です。

大手企業様ですと、ユーザーニーズの把握を面倒くさがれる方がよくいらっしゃるような印象です。

新規事業開発に予算がかけられる企業様は先に担当者の方のイメージ先行で本番レベルに近いプロトアプリを作られてしまってる方が多く、それをもってユーザー向けにインタビューなさる場合もあります。

初期仮説の段階では後でアプリ自体を変更することを視野に入れるべきです。っそのため、時間もお金もかけて開発するきちんと動作するアプリではなくて、ペーパープロトをご準備されるのが良いと思い、私たちQualitegではペーパープロトやコールドモック状態でのユーザーテスト実施を強くお勧めしています!(事前に結構アプリを作りこんでしまうとあとで替えたくなくなってしまいますしね。。。)

  • ユーザーインタビューの実施:
    ターゲットユーザーに直接インタビューを行い、彼らのニーズや課題、潜在的な欲求を深く理解します。
  • ペルソナの作成:
    インタビュー結果などを元に、ユーザー像を具体的に描き出し、より深く理解を深めます。
  • カスタマージャーニーマップの作成:
    ユーザーが製品やサービスとどのように接点を持つのか、その過程における感情や行動を可視化します。

2. 多様な視点を取り入れる

アイディアを深堀りする際には、自分自身の視点だけでなく、多様な視点を取り入れることが重要です。異なるバックグラウンドや専門性を持つ人々から意見を聞くことで、新たな発見や気づきを得ることができます。

ダイバーシティの観点は米国で用いられて日本にも取り入れられたという流れから、多民族というイメージで捉えられがちです。よくクライアント企業からも、どうやって多様な視点を取り入れたらいいのかとご相談を受けることも多いです。

  • ブレインストーミングの実施:
    多様なメンバーを集めて、自由な発想でアイディアを出し合います。
  • 専門家へのヒアリング:
    特定の分野に精通した専門家から意見を聞き、アイディアの feasibility や実現可能性を検証します。
  • 競合分析の実施:
    競合となる製品やサービスを分析し、自社のアイディアとの差別化ポイントや改善点を明確化します。

これらのような活動をしていただくことで、様々な視点を持つこともできますし、企業で行っていただく際は、部署が違う方や職種や役割が違う方、だいたい8名くらいの方に集まって頂くのがよいでしょう。企画担当、マーケ担当、エンジニア担当、管理担当、デザイナーなど職種が違うだけでも発想の源が異なるケースが多いので、深堀の際に思わぬホームランの意見が出てきたりしますので、おすすめいたします。

3. プロトタイプを作成し、検証する

アイディアを具体化し、ユーザーに実際に体験してもらうために、プロトタイプを作成します。プロトタイプは、初期段階では紙や粘土などで作られた簡易的なものでも構いません。重要なのは、ユーザーからのフィードバックを得て、アイディアを改善していくことです。

前のパートでもお話ししましたが、このペーパープロトで作りこみすぎると愛着が沸いて後で替えたくなくなる、燃え尽きてしまうということもあり本末転倒になるため、あくまでもペーパープロトはカジュアルなもの、内容がわかる程度の表現ができていればOKと思ってみてくださいね。

  • ペーパープロトタイピング:
    紙やペンを使って、アイディアを視覚的に表現します。
  • デジタルプロトタイピング:
    デザインツールなどを用いて、よりインタラクティブなプロトタイプを作成します。
  • ユーザーテストの実施:
    プロトタイプを用いてユーザーテストを行い、使い勝手や課題点を検証します。

4. データに基づいた意思決定を行う

アイディア深堀の過程では、ユーザーインタビューやプロトタイプテストなどを通じて、様々なデータが得られます。これらのデータを分析し、客観的な視点でアイディアを評価することが重要です。

企画経験が浅い方やちょっとメンタル弱めの方は、ユーザーインタビューでとにかくお客様の「いいね」を欲しがりますw。

しかし、「お世辞のいいね」をもらって、それを何千万、何億円も投資する新規事業の判断にしてよいのか、今一度冷静になって頂きたい!と私は(心を鬼にして)ご支援の際にアドバイスをさせていただいています。

ユーザーテストでの定性データももちろんですが、アンケートを利用した定量分析などもきちんと行うことで、後で手戻りが発生しないように今のうちに最適解を見つけるようにしましょう。

  • 定量データの分析:
    アクセス数やコンバージョン率などの数値データを分析し、アイディアの効果を測定します。
  • 定性データの分析:
    ユーザーインタビューやアンケートで得られた意見や感想を分析し、ユーザーのニーズや課題を深く理解します。
  • A/Bテストの実施:
    異なるバージョンのプロトタイプを比較し、より効果的なデザインや機能を検証します。

ひとつ、誤解してほしくないのが、あなたの初期仮説がちょっと合っていなかっただけで、誰も「企画の才能がない」なんて思わないんです。ということを声を大にしてお伝えしたいです。

むしろここで自分の企画案を冷静に分析して、客観的に変更すべき点を自己判断できるひとことさ真の企画マンだと私は思いますし、そのようなプロの企画担当者の育成のご支援を自分のミッションと思ってさせていただいております♪

まとめ

これらの「やるべきこと」を実践することで、Qualitegはアイディアの深堀りを効果的に行い、革新的なソリューションを生み出すご支援をしております。

日本企業のクライアントのみなさまですと、最初はちょっと苦手意識があるかもしれませんが、オープンマインドを保ち、多様な意見を取り入れることで、従来の枠組みにとらわれない新しい発想が生まれやすくなります。「なぜ?」を繰り返し問いかけ、ビジュアル化を活用することで、アイディアの本質に迫り、複雑な概念を整理することができます。

また、プロトタイピングとフィードバックの活用は、アイディアを具体化し、早期に検証する機会を提供します。これにより、実現可能性の高いアイディアを効率的に選別し、改善することが可能になります。

さらに、創造的思考のための時間と空間を確保することで、社員が日常業務から離れ、集中してアイディアを深堀りする環境を整えています。

これらの取り組みを通じて、Qualitegは継続的にイノベーションを推進し、市場のニーズに応える革新的な製品やサービスを開発しています。アイディア創出のご支援もしておりますが、プロト開発のご依頼も受けておりますので、ぜひご連絡いただければと思います。

一緒に新規事業を創出して日本を盛り上げていきましょう!


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部