[ChatStream] 生成と初期化

[ChatStream] 生成と初期化

こんにちは (株)Qualiteg プロダクト開発本部です!

本稿では、 ChatStream の生成と初期化についてご説明いたします!

ChatStream クラスは ChatStream パッケージのコアとなるクラスで、FastAPI/Starlette の Request を受け取り、
負荷制御をしながらストリーミングレスポンスをクライアントに送出する役割をもっています。

以下のように model,tokenizer,device, 最大同時処理数 num_of_concurrent_executions 、待ち行列の最大数 max_queue_size ,プロンプトクラス ChatPrompt を指定して初期化します

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

オプション一覧

ChatStream の初期化オプション(コンストラクタ引数)一覧

パラメータ名 説明
model HuggingFace形式の事前学習済み言語モデル。
tokenizer HuggingFace形式のトークナイザ。
device 実行デバイス。"cpu" / "cuda" / "mps"から選択。
num_of_concurrent_executions 事前学習済み言語モデルにおける文章生成タスクの同時実行数。デフォルトは2。
max_queue_size 事前学習済み言語モデルにおける文章生成タスクの最大キューサイズ。デフォルトは5。
too_many_request_as_http_error 'Too many requests'の状況が発生した場合、ステータスを429として返すかどうか。デフォルトはFalse。
use_mock_response テストのための固定フレーズを返すかどうか。モデルを読み込む必要がないため、すぐに起動する。デフォルトはFalse。
mock_params use_mock_response=Trueの時に返すフレーズのタイプ "round" / "long"。デフォルトは{"type": "round"}。
chat_prompt_clazz 言語モデルに送られるプロンプトを管理するクラス。AbstractChatPromptから継承し、各モデルのエチケットに従ったチャットプロンプトを生成するクラスを実装する。
max_new_tokens 新たに生成されるトークンの最大サイズ。デフォルトは256。
context_len コンテキストのサイズ(トークン数)。デフォルトは1024。
temperature 予測におけるランダム性の温度値。デフォルトは1.0。
top_k サンプリングのためのtop Kの値。デフォルトは50。
top_p サンプリングのためのtop Pの値。デフォルトは1.0。
repetition_penalty 繰り返しのペナルティ。デフォルトはNone。
repetition_penalty_method 繰り返しのペナルティの計算方法。デフォルトは"multiplicative"。
add_special_tokens トークナイザのオプション。デフォルトはNone。
request_handler リクエストハンドラ。デフォルトでは、セッションを簡単に保持するハンドラがデフォルト。
logger ロギングオブジェクト。デフォルトはNone。

例)

chat_stream = ChatStream(
     model=None,  # HuggingFace形式の事前学習済み言語モデル
     tokenizer=None,  # HuggingFace形式のトークナイザ
     device=None,  # 実行デバイス "cpu" / "cuda" / "mps"
     num_of_concurrent_executions: int = 2,     # 事前学習済み言語モデルにおける文章生成タスクの同時実行数
     max_queue_size: int = 5,     # 事前学習済み言語モデルにおける文章生成タスクの最大キューサイズ
     too_many_request_as_http_error=False,     # 'Too many requests'の状況が発生した場合、ステータスを429として返す
     use_mock_response=False,     # テストのための固定フレーズを返す。モデルを読み込む必要がないため、すぐに起動する
     mock_params={type: "round"},     # use_mock_response=Trueの時に返すフレーズのタイプ "round" / "long"
     chat_prompt_clazz=None,     # 言語モデルに送られるプロンプトを管理するクラスを指定。AbstractChatPromptから継承し、各モデルのエチケットに従ったチャットプロンプトを生成するクラスを実装する
     max_new_tokens=256,  # 新たに生成されるトークンの最大サイズ
     context_len=1024,  # コンテキストのサイズ(トークン数)
     temperature=1.0,  # 予測におけるランダム性の温度値
     top_k=50,  # サンプリングのためのtop Kの値
     top_p=1.0,  # サンプリングのためのtop Pの値
     repetition_penalty=None,  # 繰り返しのペナルティ
     repetition_penalty_method="multiplicative",  # 繰り返しのペナルティの計算方法
     # トークン関連の処理
     add_special_tokens=None,  # トークナイザのオプション
     request_handler=SimpleSessionRequestHandler(),
     # リクエストハンドラ。デフォルトでは、セッションを簡単に保持するハンドラがデフォルト
     logger=None,  # ロギングオブジェクト
)

Read more

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部
CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

株式会社Qualitegは、2025年10月14日(火)~17日(金)に幕張メッセで開催される「CEATEC 2025」に出展いたします。今回の出展では、当社が開発したフォトリアリスティックAIアバター技術「MotionVox🄬」をはじめ、最新のAI技術とビジネスイノベーションソリューションをご紹介いたします。 出展概要 * 会期:2025年10月14日(火)~10月17日(金) * 会場:幕張メッセ * 出展エリア:ネクストジェネレーションパーク * ブース番号:ホール6 6H207 * CEATEC内特設サイト:https://www.ceatec.com/nj/exhibitor_detail_ja?id=1915 見どころ:最先端AI技術を体感できる特別展示 1. フォトリアルAIアバター「MotionVox🄬」 テキスト入力だけで、まるで本物の人間のような動画を生成できる革新的なAIアバターシステムです。 MotionVox🄬は自社開発している「Expression Aware🄬」技術により日本人の演者データを基に開発された、

By Qualiteg ニュース
その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは! 本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。 ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。 エラーメッセージの詳細 [E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load

By Qualiteg プロダクト開発部
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg コンサルティング