[ChatStream] 生成と初期化

[ChatStream] 生成と初期化

こんにちは (株)Qualiteg プロダクト開発本部です!

本稿では、 ChatStream の生成と初期化についてご説明いたします!

ChatStream クラスは ChatStream パッケージのコアとなるクラスで、FastAPI/Starlette の Request を受け取り、
負荷制御をしながらストリーミングレスポンスをクライアントに送出する役割をもっています。

以下のように model,tokenizer,device, 最大同時処理数 num_of_concurrent_executions 、待ち行列の最大数 max_queue_size ,プロンプトクラス ChatPrompt を指定して初期化します

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

オプション一覧

ChatStream の初期化オプション(コンストラクタ引数)一覧

パラメータ名 説明
model HuggingFace形式の事前学習済み言語モデル。
tokenizer HuggingFace形式のトークナイザ。
device 実行デバイス。"cpu" / "cuda" / "mps"から選択。
num_of_concurrent_executions 事前学習済み言語モデルにおける文章生成タスクの同時実行数。デフォルトは2。
max_queue_size 事前学習済み言語モデルにおける文章生成タスクの最大キューサイズ。デフォルトは5。
too_many_request_as_http_error 'Too many requests'の状況が発生した場合、ステータスを429として返すかどうか。デフォルトはFalse。
use_mock_response テストのための固定フレーズを返すかどうか。モデルを読み込む必要がないため、すぐに起動する。デフォルトはFalse。
mock_params use_mock_response=Trueの時に返すフレーズのタイプ "round" / "long"。デフォルトは{"type": "round"}。
chat_prompt_clazz 言語モデルに送られるプロンプトを管理するクラス。AbstractChatPromptから継承し、各モデルのエチケットに従ったチャットプロンプトを生成するクラスを実装する。
max_new_tokens 新たに生成されるトークンの最大サイズ。デフォルトは256。
context_len コンテキストのサイズ(トークン数)。デフォルトは1024。
temperature 予測におけるランダム性の温度値。デフォルトは1.0。
top_k サンプリングのためのtop Kの値。デフォルトは50。
top_p サンプリングのためのtop Pの値。デフォルトは1.0。
repetition_penalty 繰り返しのペナルティ。デフォルトはNone。
repetition_penalty_method 繰り返しのペナルティの計算方法。デフォルトは"multiplicative"。
add_special_tokens トークナイザのオプション。デフォルトはNone。
request_handler リクエストハンドラ。デフォルトでは、セッションを簡単に保持するハンドラがデフォルト。
logger ロギングオブジェクト。デフォルトはNone。

例)

chat_stream = ChatStream(
     model=None,  # HuggingFace形式の事前学習済み言語モデル
     tokenizer=None,  # HuggingFace形式のトークナイザ
     device=None,  # 実行デバイス "cpu" / "cuda" / "mps"
     num_of_concurrent_executions: int = 2,     # 事前学習済み言語モデルにおける文章生成タスクの同時実行数
     max_queue_size: int = 5,     # 事前学習済み言語モデルにおける文章生成タスクの最大キューサイズ
     too_many_request_as_http_error=False,     # 'Too many requests'の状況が発生した場合、ステータスを429として返す
     use_mock_response=False,     # テストのための固定フレーズを返す。モデルを読み込む必要がないため、すぐに起動する
     mock_params={type: "round"},     # use_mock_response=Trueの時に返すフレーズのタイプ "round" / "long"
     chat_prompt_clazz=None,     # 言語モデルに送られるプロンプトを管理するクラスを指定。AbstractChatPromptから継承し、各モデルのエチケットに従ったチャットプロンプトを生成するクラスを実装する
     max_new_tokens=256,  # 新たに生成されるトークンの最大サイズ
     context_len=1024,  # コンテキストのサイズ(トークン数)
     temperature=1.0,  # 予測におけるランダム性の温度値
     top_k=50,  # サンプリングのためのtop Kの値
     top_p=1.0,  # サンプリングのためのtop Pの値
     repetition_penalty=None,  # 繰り返しのペナルティ
     repetition_penalty_method="multiplicative",  # 繰り返しのペナルティの計算方法
     # トークン関連の処理
     add_special_tokens=None,  # トークナイザのオプション
     request_handler=SimpleSessionRequestHandler(),
     # リクエストハンドラ。デフォルトでは、セッションを簡単に保持するハンドラがデフォルト
     logger=None,  # ロギングオブジェクト
)

Read more

(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部
CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

株式会社Qualitegは、2025年10月14日(火)~17日(金)に幕張メッセで開催される「CEATEC 2025」に出展いたします。今回の出展では、当社が開発したフォトリアリスティックAIアバター技術「MotionVox🄬」をはじめ、最新のAI技術とビジネスイノベーションソリューションをご紹介いたします。 出展概要 * 会期:2025年10月14日(火)~10月17日(金) * 会場:幕張メッセ * 出展エリア:ネクストジェネレーションパーク * ブース番号:ホール6 6H207 * CEATEC内特設サイト:https://www.ceatec.com/nj/exhibitor_detail_ja?id=1915 見どころ:最先端AI技術を体感できる特別展示 1. フォトリアルAIアバター「MotionVox🄬」 テキスト入力だけで、まるで本物の人間のような動画を生成できる革新的なAIアバターシステムです。 MotionVox🄬は自社開発している「Expression Aware🄬」技術により日本人の演者データを基に開発された、

By Qualiteg ニュース