[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

仮説探索インタビューは難しく、テクニックが必要です。事実確認のための仮説検証インタビューとは異なり、参加者の現在の考えや悩みを深く探るものです。オンラインで行う際はカメラオンで1対1が推奨され、アイスブレーキングで信頼関係を築きます。このアプローチでは、インタビューガイドに沿った質問をしながらも、参加者の話に柔軟に対応し、追加の「なぜ?」質問で動機や感情を掘り下げます。

[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


正直申し上げて、仮説探索のインタビューはテクニックが必要で非常に難しいです。仮説検証のインタビューはコンサルなどでもできる人はいますが、どれが気に入ったか、本当に使っているかどうかの事実確認をする仮説検証インタビューと、今何を考えていて何が悩みなのかをヒアリングする仮説探索インタビューは全く違うものになります。

ここでは、有益な仮説探索インタビューを実施していただくためのガイドについて解説していきたいと思います。

まず初めに、相手との関係構築を

最近特にオンラインでのインタビューを行う機会が増えてきましたが、インタビューを行う際はカメラオンでかつ、1対1で行うことをお勧めします。1対1で行うことで相手との信頼感が生まれるからです。

また、インタビューの初めにアイスブレーキングを行うことは、参加者がリラックスして自然体で話すために非常に重要です。この段階では、フォーマルな雰囲気を和らげ、信頼関係を築くことを目的とします。アイスブレーキングには、参加者の興味や日常生活に関する軽い話題を選ぶと良いでしょう。

two women looking at person across the table

たとえば、趣味や最近の楽しい出来事について尋ねることから始めます。また、一方的に尋ねるだけではなく、自分自身の話もして、お互い会話のキャッチボールを楽しめるような雰囲気づくりを心掛けてください。

その際に、インタビュアー自身も自己紹介を行い、自分の背景やインタビューの目的について簡単に説明しましょう。これらは透明性を持たせ、参加者の安心感を高めることができます。

アイスブレーキングは短くても、インタビューの質を向上させるためには欠かせないステップです。この時間を有効に使うことで、全体の対話がスムーズに進み、より深い情報を引き出すことが可能になりますので、おすすめとしては最低10分、全体の時間が60分~90分あるのであれば、できれば15分~20分くらいアイスブレーキングに使ってもよいと考えています。

真のイノベーションは、多様な視点がぶつかり合う「創造的摩擦」から生まれます。株式会社Qualitegの Innovation-Crossは、企業内外の異なる知見や発想を意図的に交差させ、革新的な価値創出を促進するプログラム。企業の現状分析をもとに、社内の異なる部門や外部のパートナーを効果的に結びつける戦略を策定し、アイデアワークショップやハッカソン企画などを通じて、多様な知恵の化学反応を引き起こします。

最先端AI技術の活用支援も含め、「自社だけでは生まれない」異質な発想の融合による革新を実現。経験豊富な専門コンサルタントが、この創造的摩擦を適切にマネジメントし、従来の枠を超えた新たな価値創造へと導きます。イノベーションは、境界線を越えたところに花開きます。

主要な質問を効果的に行うためには

インタビューでは、事前に準備したインタビューガイドに沿って主要な質問を構造化して進めます。この段階で、参加者からの回答に対して柔軟に反応し、必要に応じてさらに質問を深掘りすることが重要です。

ありがちな罠としては、自身が用意したインタビューガイドに沿って質問し、想定した答えを引き出したいと無意識に思って、インタビュー内容をコントロールしてしまうことが危険です。

gray laptop computer

今回のインタビューは仮説検証ではありません。あくまでも仮説探索なので、ご自身で事前に準備した仮説はあっていなくてもよいのです。相手の話を聞くために設定したインタビューであることを忘れないようにしましょう。

そのため、相手の話が飛んでしまっても、その話を無理に引き戻して自分のガイドに沿って話をする必要がありません。話が飛んでもその流れで後に聞こうと思っていた別の項目について深堀しながら聞くなど、参加者が話す内容に注意深く耳を傾け、関連する追加質問をすることで、より詳細な情報や意見を引き出すことに注力しましょう。

このプロセスは、単に情報を収集するだけでなく、参加者の言葉の背後にある意味や感情を理解するためにも役立ちます。インタビューガイドは基本的な枠組みを提供しますが、対話の自然な流れを重視し、参加者の言葉に敏感に反応することが求められますので、そのように進めてみてください。

man in blue and white plaid dress shirt using macbook pro

追加質問で深掘りしましょう

追加質問を用いて深掘りする際、「なぜ?」という質問は非常に有効です。

参加者が何かを伝えてくれたときに、その背景にある動機や感情を明らかにするためにこの質問を繰り返し使用します。一度目の「なぜ?」で表面的な理由が明らかになることが多いですが、それを何度も繰り返すことで、より深い理由や本質的な感情が浮かび上がってきます。

また、それらが言語化されないケースもありますが、おおくの「なぜ?」を聞いておくと後でユーザーの感情分析をするのに役立ちます。

例えば、なぜそのシャンプーを使っているのか、というインタビューをしたとします。最初は、髪の毛がサラサラになるから、などという一遍通りな答えがでまずが、「なぜ?」を繰り返して聞いていくと、「髪の毛につやが出て色っぽく見える」、「いい香りがしたとほめられた」などというエピソードを聞くことができ、この方の購買決定要因は「いい女性と思われたい、もてたいという気持ちがある」ということがわかりますよね。

woman standing next to pink wall while scratching her head

このように、「なぜ?」を繰り返すことで、より真因にたどり着けることができます。

このアプローチにより、参加者自身が意識していない感情や考えを自然に引き出すことができ、インタビューにおいて豊かな洞察を得る手段となります。このような深掘りは、データの質を高め、より詳細な理解を促進することができますので、訓練は必要ですがぜひ、この手法でインタビューをすることをお勧めいたします。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング