[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

仮説探索インタビューは難しく、テクニックが必要です。事実確認のための仮説検証インタビューとは異なり、参加者の現在の考えや悩みを深く探るものです。オンラインで行う際はカメラオンで1対1が推奨され、アイスブレーキングで信頼関係を築きます。このアプローチでは、インタビューガイドに沿った質問をしながらも、参加者の話に柔軟に対応し、追加の「なぜ?」質問で動機や感情を掘り下げます。

[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


正直申し上げて、仮説探索のインタビューはテクニックが必要で非常に難しいです。仮説検証のインタビューはコンサルなどでもできる人はいますが、どれが気に入ったか、本当に使っているかどうかの事実確認をする仮説検証インタビューと、今何を考えていて何が悩みなのかをヒアリングする仮説探索インタビューは全く違うものになります。

ここでは、有益な仮説探索インタビューを実施していただくためのガイドについて解説していきたいと思います。

まず初めに、相手との関係構築を

最近特にオンラインでのインタビューを行う機会が増えてきましたが、インタビューを行う際はカメラオンでかつ、1対1で行うことをお勧めします。1対1で行うことで相手との信頼感が生まれるからです。

また、インタビューの初めにアイスブレーキングを行うことは、参加者がリラックスして自然体で話すために非常に重要です。この段階では、フォーマルな雰囲気を和らげ、信頼関係を築くことを目的とします。アイスブレーキングには、参加者の興味や日常生活に関する軽い話題を選ぶと良いでしょう。

two women looking at person across the table

たとえば、趣味や最近の楽しい出来事について尋ねることから始めます。また、一方的に尋ねるだけではなく、自分自身の話もして、お互い会話のキャッチボールを楽しめるような雰囲気づくりを心掛けてください。

その際に、インタビュアー自身も自己紹介を行い、自分の背景やインタビューの目的について簡単に説明しましょう。これらは透明性を持たせ、参加者の安心感を高めることができます。

アイスブレーキングは短くても、インタビューの質を向上させるためには欠かせないステップです。この時間を有効に使うことで、全体の対話がスムーズに進み、より深い情報を引き出すことが可能になりますので、おすすめとしては最低10分、全体の時間が60分~90分あるのであれば、できれば15分~20分くらいアイスブレーキングに使ってもよいと考えています。

真のイノベーションは、多様な視点がぶつかり合う「創造的摩擦」から生まれます。株式会社Qualitegの Innovation-Crossは、企業内外の異なる知見や発想を意図的に交差させ、革新的な価値創出を促進するプログラム。企業の現状分析をもとに、社内の異なる部門や外部のパートナーを効果的に結びつける戦略を策定し、アイデアワークショップやハッカソン企画などを通じて、多様な知恵の化学反応を引き起こします。

最先端AI技術の活用支援も含め、「自社だけでは生まれない」異質な発想の融合による革新を実現。経験豊富な専門コンサルタントが、この創造的摩擦を適切にマネジメントし、従来の枠を超えた新たな価値創造へと導きます。イノベーションは、境界線を越えたところに花開きます。

主要な質問を効果的に行うためには

インタビューでは、事前に準備したインタビューガイドに沿って主要な質問を構造化して進めます。この段階で、参加者からの回答に対して柔軟に反応し、必要に応じてさらに質問を深掘りすることが重要です。

ありがちな罠としては、自身が用意したインタビューガイドに沿って質問し、想定した答えを引き出したいと無意識に思って、インタビュー内容をコントロールしてしまうことが危険です。

gray laptop computer

今回のインタビューは仮説検証ではありません。あくまでも仮説探索なので、ご自身で事前に準備した仮説はあっていなくてもよいのです。相手の話を聞くために設定したインタビューであることを忘れないようにしましょう。

そのため、相手の話が飛んでしまっても、その話を無理に引き戻して自分のガイドに沿って話をする必要がありません。話が飛んでもその流れで後に聞こうと思っていた別の項目について深堀しながら聞くなど、参加者が話す内容に注意深く耳を傾け、関連する追加質問をすることで、より詳細な情報や意見を引き出すことに注力しましょう。

このプロセスは、単に情報を収集するだけでなく、参加者の言葉の背後にある意味や感情を理解するためにも役立ちます。インタビューガイドは基本的な枠組みを提供しますが、対話の自然な流れを重視し、参加者の言葉に敏感に反応することが求められますので、そのように進めてみてください。

man in blue and white plaid dress shirt using macbook pro

追加質問で深掘りしましょう

追加質問を用いて深掘りする際、「なぜ?」という質問は非常に有効です。

参加者が何かを伝えてくれたときに、その背景にある動機や感情を明らかにするためにこの質問を繰り返し使用します。一度目の「なぜ?」で表面的な理由が明らかになることが多いですが、それを何度も繰り返すことで、より深い理由や本質的な感情が浮かび上がってきます。

また、それらが言語化されないケースもありますが、おおくの「なぜ?」を聞いておくと後でユーザーの感情分析をするのに役立ちます。

例えば、なぜそのシャンプーを使っているのか、というインタビューをしたとします。最初は、髪の毛がサラサラになるから、などという一遍通りな答えがでまずが、「なぜ?」を繰り返して聞いていくと、「髪の毛につやが出て色っぽく見える」、「いい香りがしたとほめられた」などというエピソードを聞くことができ、この方の購買決定要因は「いい女性と思われたい、もてたいという気持ちがある」ということがわかりますよね。

woman standing next to pink wall while scratching her head

このように、「なぜ?」を繰り返すことで、より真因にたどり着けることができます。

このアプローチにより、参加者自身が意識していない感情や考えを自然に引き出すことができ、インタビューにおいて豊かな洞察を得る手段となります。このような深掘りは、データの質を高め、より詳細な理解を促進することができますので、訓練は必要ですがぜひ、この手法でインタビューをすることをお勧めいたします。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部