[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

仮説探索インタビューは難しく、テクニックが必要です。事実確認のための仮説検証インタビューとは異なり、参加者の現在の考えや悩みを深く探るものです。オンラインで行う際はカメラオンで1対1が推奨され、アイスブレーキングで信頼関係を築きます。このアプローチでは、インタビューガイドに沿った質問をしながらも、参加者の話に柔軟に対応し、追加の「なぜ?」質問で動機や感情を掘り下げます。

[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


正直申し上げて、仮説探索のインタビューはテクニックが必要で非常に難しいです。仮説検証のインタビューはコンサルなどでもできる人はいますが、どれが気に入ったか、本当に使っているかどうかの事実確認をする仮説検証インタビューと、今何を考えていて何が悩みなのかをヒアリングする仮説探索インタビューは全く違うものになります。

ここでは、有益な仮説探索インタビューを実施していただくためのガイドについて解説していきたいと思います。

まず初めに、相手との関係構築を

最近特にオンラインでのインタビューを行う機会が増えてきましたが、インタビューを行う際はカメラオンでかつ、1対1で行うことをお勧めします。1対1で行うことで相手との信頼感が生まれるからです。

また、インタビューの初めにアイスブレーキングを行うことは、参加者がリラックスして自然体で話すために非常に重要です。この段階では、フォーマルな雰囲気を和らげ、信頼関係を築くことを目的とします。アイスブレーキングには、参加者の興味や日常生活に関する軽い話題を選ぶと良いでしょう。

two women looking at person across the table

たとえば、趣味や最近の楽しい出来事について尋ねることから始めます。また、一方的に尋ねるだけではなく、自分自身の話もして、お互い会話のキャッチボールを楽しめるような雰囲気づくりを心掛けてください。

その際に、インタビュアー自身も自己紹介を行い、自分の背景やインタビューの目的について簡単に説明しましょう。これらは透明性を持たせ、参加者の安心感を高めることができます。

アイスブレーキングは短くても、インタビューの質を向上させるためには欠かせないステップです。この時間を有効に使うことで、全体の対話がスムーズに進み、より深い情報を引き出すことが可能になりますので、おすすめとしては最低10分、全体の時間が60分~90分あるのであれば、できれば15分~20分くらいアイスブレーキングに使ってもよいと考えています。

真のイノベーションは、多様な視点がぶつかり合う「創造的摩擦」から生まれます。株式会社Qualitegの Innovation-Crossは、企業内外の異なる知見や発想を意図的に交差させ、革新的な価値創出を促進するプログラム。企業の現状分析をもとに、社内の異なる部門や外部のパートナーを効果的に結びつける戦略を策定し、アイデアワークショップやハッカソン企画などを通じて、多様な知恵の化学反応を引き起こします。

最先端AI技術の活用支援も含め、「自社だけでは生まれない」異質な発想の融合による革新を実現。経験豊富な専門コンサルタントが、この創造的摩擦を適切にマネジメントし、従来の枠を超えた新たな価値創造へと導きます。イノベーションは、境界線を越えたところに花開きます。

主要な質問を効果的に行うためには

インタビューでは、事前に準備したインタビューガイドに沿って主要な質問を構造化して進めます。この段階で、参加者からの回答に対して柔軟に反応し、必要に応じてさらに質問を深掘りすることが重要です。

ありがちな罠としては、自身が用意したインタビューガイドに沿って質問し、想定した答えを引き出したいと無意識に思って、インタビュー内容をコントロールしてしまうことが危険です。

gray laptop computer

今回のインタビューは仮説検証ではありません。あくまでも仮説探索なので、ご自身で事前に準備した仮説はあっていなくてもよいのです。相手の話を聞くために設定したインタビューであることを忘れないようにしましょう。

そのため、相手の話が飛んでしまっても、その話を無理に引き戻して自分のガイドに沿って話をする必要がありません。話が飛んでもその流れで後に聞こうと思っていた別の項目について深堀しながら聞くなど、参加者が話す内容に注意深く耳を傾け、関連する追加質問をすることで、より詳細な情報や意見を引き出すことに注力しましょう。

このプロセスは、単に情報を収集するだけでなく、参加者の言葉の背後にある意味や感情を理解するためにも役立ちます。インタビューガイドは基本的な枠組みを提供しますが、対話の自然な流れを重視し、参加者の言葉に敏感に反応することが求められますので、そのように進めてみてください。

man in blue and white plaid dress shirt using macbook pro

追加質問で深掘りしましょう

追加質問を用いて深掘りする際、「なぜ?」という質問は非常に有効です。

参加者が何かを伝えてくれたときに、その背景にある動機や感情を明らかにするためにこの質問を繰り返し使用します。一度目の「なぜ?」で表面的な理由が明らかになることが多いですが、それを何度も繰り返すことで、より深い理由や本質的な感情が浮かび上がってきます。

また、それらが言語化されないケースもありますが、おおくの「なぜ?」を聞いておくと後でユーザーの感情分析をするのに役立ちます。

例えば、なぜそのシャンプーを使っているのか、というインタビューをしたとします。最初は、髪の毛がサラサラになるから、などという一遍通りな答えがでまずが、「なぜ?」を繰り返して聞いていくと、「髪の毛につやが出て色っぽく見える」、「いい香りがしたとほめられた」などというエピソードを聞くことができ、この方の購買決定要因は「いい女性と思われたい、もてたいという気持ちがある」ということがわかりますよね。

woman standing next to pink wall while scratching her head

このように、「なぜ?」を繰り返すことで、より真因にたどり着けることができます。

このアプローチにより、参加者自身が意識していない感情や考えを自然に引き出すことができ、インタビューにおいて豊かな洞察を得る手段となります。このような深掘りは、データの質を高め、より詳細な理解を促進することができますので、訓練は必要ですがぜひ、この手法でインタビューをすることをお勧めいたします。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部