[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

仮説探索インタビューは難しく、テクニックが必要です。事実確認のための仮説検証インタビューとは異なり、参加者の現在の考えや悩みを深く探るものです。オンラインで行う際はカメラオンで1対1が推奨され、アイスブレーキングで信頼関係を築きます。このアプローチでは、インタビューガイドに沿った質問をしながらも、参加者の話に柔軟に対応し、追加の「なぜ?」質問で動機や感情を掘り下げます。

[AI新規事業創出]Qualitegが考える、仮説探索の為のユーザーインタビュー実施方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


正直申し上げて、仮説探索のインタビューはテクニックが必要で非常に難しいです。仮説検証のインタビューはコンサルなどでもできる人はいますが、どれが気に入ったか、本当に使っているかどうかの事実確認をする仮説検証インタビューと、今何を考えていて何が悩みなのかをヒアリングする仮説探索インタビューは全く違うものになります。

ここでは、有益な仮説探索インタビューを実施していただくためのガイドについて解説していきたいと思います。

まず初めに、相手との関係構築を

最近特にオンラインでのインタビューを行う機会が増えてきましたが、インタビューを行う際はカメラオンでかつ、1対1で行うことをお勧めします。1対1で行うことで相手との信頼感が生まれるからです。

また、インタビューの初めにアイスブレーキングを行うことは、参加者がリラックスして自然体で話すために非常に重要です。この段階では、フォーマルな雰囲気を和らげ、信頼関係を築くことを目的とします。アイスブレーキングには、参加者の興味や日常生活に関する軽い話題を選ぶと良いでしょう。

two women looking at person across the table

たとえば、趣味や最近の楽しい出来事について尋ねることから始めます。また、一方的に尋ねるだけではなく、自分自身の話もして、お互い会話のキャッチボールを楽しめるような雰囲気づくりを心掛けてください。

その際に、インタビュアー自身も自己紹介を行い、自分の背景やインタビューの目的について簡単に説明しましょう。これらは透明性を持たせ、参加者の安心感を高めることができます。

アイスブレーキングは短くても、インタビューの質を向上させるためには欠かせないステップです。この時間を有効に使うことで、全体の対話がスムーズに進み、より深い情報を引き出すことが可能になりますので、おすすめとしては最低10分、全体の時間が60分~90分あるのであれば、できれば15分~20分くらいアイスブレーキングに使ってもよいと考えています。

真のイノベーションは、多様な視点がぶつかり合う「創造的摩擦」から生まれます。株式会社Qualitegの Innovation-Crossは、企業内外の異なる知見や発想を意図的に交差させ、革新的な価値創出を促進するプログラム。企業の現状分析をもとに、社内の異なる部門や外部のパートナーを効果的に結びつける戦略を策定し、アイデアワークショップやハッカソン企画などを通じて、多様な知恵の化学反応を引き起こします。

最先端AI技術の活用支援も含め、「自社だけでは生まれない」異質な発想の融合による革新を実現。経験豊富な専門コンサルタントが、この創造的摩擦を適切にマネジメントし、従来の枠を超えた新たな価値創造へと導きます。イノベーションは、境界線を越えたところに花開きます。

主要な質問を効果的に行うためには

インタビューでは、事前に準備したインタビューガイドに沿って主要な質問を構造化して進めます。この段階で、参加者からの回答に対して柔軟に反応し、必要に応じてさらに質問を深掘りすることが重要です。

ありがちな罠としては、自身が用意したインタビューガイドに沿って質問し、想定した答えを引き出したいと無意識に思って、インタビュー内容をコントロールしてしまうことが危険です。

gray laptop computer

今回のインタビューは仮説検証ではありません。あくまでも仮説探索なので、ご自身で事前に準備した仮説はあっていなくてもよいのです。相手の話を聞くために設定したインタビューであることを忘れないようにしましょう。

そのため、相手の話が飛んでしまっても、その話を無理に引き戻して自分のガイドに沿って話をする必要がありません。話が飛んでもその流れで後に聞こうと思っていた別の項目について深堀しながら聞くなど、参加者が話す内容に注意深く耳を傾け、関連する追加質問をすることで、より詳細な情報や意見を引き出すことに注力しましょう。

このプロセスは、単に情報を収集するだけでなく、参加者の言葉の背後にある意味や感情を理解するためにも役立ちます。インタビューガイドは基本的な枠組みを提供しますが、対話の自然な流れを重視し、参加者の言葉に敏感に反応することが求められますので、そのように進めてみてください。

man in blue and white plaid dress shirt using macbook pro

追加質問で深掘りしましょう

追加質問を用いて深掘りする際、「なぜ?」という質問は非常に有効です。

参加者が何かを伝えてくれたときに、その背景にある動機や感情を明らかにするためにこの質問を繰り返し使用します。一度目の「なぜ?」で表面的な理由が明らかになることが多いですが、それを何度も繰り返すことで、より深い理由や本質的な感情が浮かび上がってきます。

また、それらが言語化されないケースもありますが、おおくの「なぜ?」を聞いておくと後でユーザーの感情分析をするのに役立ちます。

例えば、なぜそのシャンプーを使っているのか、というインタビューをしたとします。最初は、髪の毛がサラサラになるから、などという一遍通りな答えがでまずが、「なぜ?」を繰り返して聞いていくと、「髪の毛につやが出て色っぽく見える」、「いい香りがしたとほめられた」などというエピソードを聞くことができ、この方の購買決定要因は「いい女性と思われたい、もてたいという気持ちがある」ということがわかりますよね。

woman standing next to pink wall while scratching her head

このように、「なぜ?」を繰り返すことで、より真因にたどり着けることができます。

このアプローチにより、参加者自身が意識していない感情や考えを自然に引き出すことができ、インタビューにおいて豊かな洞察を得る手段となります。このような深掘りは、データの質を高め、より詳細な理解を促進することができますので、訓練は必要ですがぜひ、この手法でインタビューをすることをお勧めいたします。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部