[自作日記5] マザーボードはどれがいい?

[自作日記5] マザーボードはどれがいい?

今回は、マザーボードの選定をします。

Junさんの買い物の続きをみるまえにもう一度チップセットについておさらいしておきましょう。

インテルの CoreシリーズCPUは 12世代、13世代ともに、CPUソケットが LGA 1700 となっており、多くの場合、12世代用のチップセットは13世代のCPUとも互換性がありますが、最新の機能や最適な性能を得るには、対応する世代のチップセットを使用することが推奨されます。

たとえば、12世代のインテルCoreシリーズCPU用に設計されている チップセットには以下のようなものがありますが、AI用途であればGPUを使いますので、Z690,H670のようなハイエンドチップセットを選ぶのが安全でしょう。

  • Z690: 高性能チップセットで、オーバークロッキングサポート、PCIe 5.0 x16スロット、多数のPCIe 4.0レーン、高速なUSB 3.2 Gen 2x2接続、および高速ストレージのための複数のM.2スロットが提供されています。
  • H670: オーバークロッキングはサポートしていませんが、それ以外の機能はZ690に近いチップセットです。
  • B660: PCIe 5.0サポートが限定的で、オーバークロッキングもサポートされていませんが、コストパフォーマンスに優れてチップセットです。
  • H610: 基本的な機能のみを提供し、PCIe 4.0や高速USBのサポートが制限されています。

では、ふたたび Junさんに視点をうつしましょう


③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

CPUは、

13世代 i5 13600
12世代 i7 12700

に絞り込んだけど、これに合うマザーボードは何にしようか。

チップセットはZ690かZ790か。

店員さんに相談すると AI用途(GPU搭載用途)で、12世代のCPUであれば、Z690、13世代のCPUであればZ790のチップセットのマザーボードがお薦めだそうです。

ここで1つ疑問が。

確か 13世代のCoreシリーズも、12世代のCoreシリーズもどちらも、CPUソケットは LGA1700 だったはず。
ということは、 Z690 チップセット搭載のマザーボードに 13世代の i5 13600 も搭載できるのではないだろうか。

この疑問を店員さんにぶつけてみました。

私「Z690チップセットのマザーボードに13世代の CoreシリーズCPUって載りますよね」

「うーん。それはマザーボードのサポートによりますね」

私「え?そうなんですか? 13世代のCPUもLGA1700 だから Z690 のチップセットでも動くと思ったのですが」

「確かに、同じ LGA1700 でも、 13世代のCPUが、Z690という12世代用のチップセットでもそのまま動くかというと、そういうわけではないんです。あくまでZ690は12世代用のチップセットなので。」

私「なるほど。じゃあマザーボードがZ690で、CPUが 13世代の Core i5 13600 という組み合わせは無しってことなんですね」

「完全に無しではないんです。」

私「え?」

「メーカーによってはZ690のマザーボードもファームウェアをアップデートすることで 13世代まで公式にサポートしてくれるものもあれば、なにもしないでもZ690チップセットマザーボードにそのまま13世代のCPUをのせたら、動いているという事例も数多くあります。ただ、対応がマザーボードやメーカーによっても異なりますので、個別にメーカーに確認していただくか、13世代にはZ790等13世代のためのチップセットを使っていただくのが良いかと思います」

私「なるほど、そういうことなんですね、理解できました。」

この件、これほど、食い下がったのには実は訳があります。

Z690 のマザーボードの方が安いんです。
当たり前かもしれませんが、最新のZ790はマザーボードは実売2万円くらい高い印象です。
だから、Core i5 13600 と Z690 だとバランスが良いとおもったのでした。

でも、質問していろいろ理解が深まったので、結論がでました。

店員さんとも相談して、 Z690マザーボードはZ790よりも安く、性能面でも12世代が13世代に比べてそれほど劣るわけではないため、Z690マザーボードで行くことにしました!

選んだマザーボードは、ASRock Z690 Steel Legend というやつです。3万円台後半で手に入りました!


ついに、1つめのパーツを購入できました!

そして、このマザーボードを選んだことで自動的に、CPUも決定しました!

12世代 i7 12700 に決定です!

同じお店で、CPUもゲットしました!12世代のIntel Corei7 12700Kです!


今回はいかがでしたでしょうか。Junさんは、性能と価格の近い2つのCPUで悩んでいましたが、今回はマザーボードの価格で判断しました。といっても妥協しているわけではなくZ690は12世代のチップセットのなかでは最高のもので、コストパフォーマンスがZ790に対して優れていたため、このような結果となったのでした。

PC自作はトータルバランスが重要です。お金が無限にあるわけではないので、どこに力をいれるか、どこはほどほどで良いか、こういう微調整の連続で、それがまた楽しく自作の醍醐味だと感じています。

さて、次回は、メモリや電源など周辺パーツの選定に移ります!


navigation

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部