[自作日記5] マザーボードはどれがいい?

[自作日記5] マザーボードはどれがいい?

今回は、マザーボードの選定をします。

Junさんの買い物の続きをみるまえにもう一度チップセットについておさらいしておきましょう。

インテルの CoreシリーズCPUは 12世代、13世代ともに、CPUソケットが LGA 1700 となっており、多くの場合、12世代用のチップセットは13世代のCPUとも互換性がありますが、最新の機能や最適な性能を得るには、対応する世代のチップセットを使用することが推奨されます。

たとえば、12世代のインテルCoreシリーズCPU用に設計されている チップセットには以下のようなものがありますが、AI用途であればGPUを使いますので、Z690,H670のようなハイエンドチップセットを選ぶのが安全でしょう。

  • Z690: 高性能チップセットで、オーバークロッキングサポート、PCIe 5.0 x16スロット、多数のPCIe 4.0レーン、高速なUSB 3.2 Gen 2x2接続、および高速ストレージのための複数のM.2スロットが提供されています。
  • H670: オーバークロッキングはサポートしていませんが、それ以外の機能はZ690に近いチップセットです。
  • B660: PCIe 5.0サポートが限定的で、オーバークロッキングもサポートされていませんが、コストパフォーマンスに優れてチップセットです。
  • H610: 基本的な機能のみを提供し、PCIe 4.0や高速USBのサポートが制限されています。

では、ふたたび Junさんに視点をうつしましょう


③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

CPUは、

13世代 i5 13600
12世代 i7 12700

に絞り込んだけど、これに合うマザーボードは何にしようか。

チップセットはZ690かZ790か。

店員さんに相談すると AI用途(GPU搭載用途)で、12世代のCPUであれば、Z690、13世代のCPUであればZ790のチップセットのマザーボードがお薦めだそうです。

ここで1つ疑問が。

確か 13世代のCoreシリーズも、12世代のCoreシリーズもどちらも、CPUソケットは LGA1700 だったはず。
ということは、 Z690 チップセット搭載のマザーボードに 13世代の i5 13600 も搭載できるのではないだろうか。

この疑問を店員さんにぶつけてみました。

私「Z690チップセットのマザーボードに13世代の CoreシリーズCPUって載りますよね」

「うーん。それはマザーボードのサポートによりますね」

私「え?そうなんですか? 13世代のCPUもLGA1700 だから Z690 のチップセットでも動くと思ったのですが」

「確かに、同じ LGA1700 でも、 13世代のCPUが、Z690という12世代用のチップセットでもそのまま動くかというと、そういうわけではないんです。あくまでZ690は12世代用のチップセットなので。」

私「なるほど。じゃあマザーボードがZ690で、CPUが 13世代の Core i5 13600 という組み合わせは無しってことなんですね」

「完全に無しではないんです。」

私「え?」

「メーカーによってはZ690のマザーボードもファームウェアをアップデートすることで 13世代まで公式にサポートしてくれるものもあれば、なにもしないでもZ690チップセットマザーボードにそのまま13世代のCPUをのせたら、動いているという事例も数多くあります。ただ、対応がマザーボードやメーカーによっても異なりますので、個別にメーカーに確認していただくか、13世代にはZ790等13世代のためのチップセットを使っていただくのが良いかと思います」

私「なるほど、そういうことなんですね、理解できました。」

この件、これほど、食い下がったのには実は訳があります。

Z690 のマザーボードの方が安いんです。
当たり前かもしれませんが、最新のZ790はマザーボードは実売2万円くらい高い印象です。
だから、Core i5 13600 と Z690 だとバランスが良いとおもったのでした。

でも、質問していろいろ理解が深まったので、結論がでました。

店員さんとも相談して、 Z690マザーボードはZ790よりも安く、性能面でも12世代が13世代に比べてそれほど劣るわけではないため、Z690マザーボードで行くことにしました!

選んだマザーボードは、ASRock Z690 Steel Legend というやつです。3万円台後半で手に入りました!


ついに、1つめのパーツを購入できました!

そして、このマザーボードを選んだことで自動的に、CPUも決定しました!

12世代 i7 12700 に決定です!

同じお店で、CPUもゲットしました!12世代のIntel Corei7 12700Kです!


今回はいかがでしたでしょうか。Junさんは、性能と価格の近い2つのCPUで悩んでいましたが、今回はマザーボードの価格で判断しました。といっても妥協しているわけではなくZ690は12世代のチップセットのなかでは最高のもので、コストパフォーマンスがZ790に対して優れていたため、このような結果となったのでした。

PC自作はトータルバランスが重要です。お金が無限にあるわけではないので、どこに力をいれるか、どこはほどほどで良いか、こういう微調整の連続で、それがまた楽しく自作の醍醐味だと感じています。

さて、次回は、メモリや電源など周辺パーツの選定に移ります!


navigation

Read more

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング