[自作日記5] マザーボードはどれがいい?

[自作日記5] マザーボードはどれがいい?

今回は、マザーボードの選定をします。

Junさんの買い物の続きをみるまえにもう一度チップセットについておさらいしておきましょう。

インテルの CoreシリーズCPUは 12世代、13世代ともに、CPUソケットが LGA 1700 となっており、多くの場合、12世代用のチップセットは13世代のCPUとも互換性がありますが、最新の機能や最適な性能を得るには、対応する世代のチップセットを使用することが推奨されます。

たとえば、12世代のインテルCoreシリーズCPU用に設計されている チップセットには以下のようなものがありますが、AI用途であればGPUを使いますので、Z690,H670のようなハイエンドチップセットを選ぶのが安全でしょう。

  • Z690: 高性能チップセットで、オーバークロッキングサポート、PCIe 5.0 x16スロット、多数のPCIe 4.0レーン、高速なUSB 3.2 Gen 2x2接続、および高速ストレージのための複数のM.2スロットが提供されています。
  • H670: オーバークロッキングはサポートしていませんが、それ以外の機能はZ690に近いチップセットです。
  • B660: PCIe 5.0サポートが限定的で、オーバークロッキングもサポートされていませんが、コストパフォーマンスに優れてチップセットです。
  • H610: 基本的な機能のみを提供し、PCIe 4.0や高速USBのサポートが制限されています。

では、ふたたび Junさんに視点をうつしましょう


③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

CPUは、

13世代 i5 13600
12世代 i7 12700

に絞り込んだけど、これに合うマザーボードは何にしようか。

チップセットはZ690かZ790か。

店員さんに相談すると AI用途(GPU搭載用途)で、12世代のCPUであれば、Z690、13世代のCPUであればZ790のチップセットのマザーボードがお薦めだそうです。

ここで1つ疑問が。

確か 13世代のCoreシリーズも、12世代のCoreシリーズもどちらも、CPUソケットは LGA1700 だったはず。
ということは、 Z690 チップセット搭載のマザーボードに 13世代の i5 13600 も搭載できるのではないだろうか。

この疑問を店員さんにぶつけてみました。

私「Z690チップセットのマザーボードに13世代の CoreシリーズCPUって載りますよね」

「うーん。それはマザーボードのサポートによりますね」

私「え?そうなんですか? 13世代のCPUもLGA1700 だから Z690 のチップセットでも動くと思ったのですが」

「確かに、同じ LGA1700 でも、 13世代のCPUが、Z690という12世代用のチップセットでもそのまま動くかというと、そういうわけではないんです。あくまでZ690は12世代用のチップセットなので。」

私「なるほど。じゃあマザーボードがZ690で、CPUが 13世代の Core i5 13600 という組み合わせは無しってことなんですね」

「完全に無しではないんです。」

私「え?」

「メーカーによってはZ690のマザーボードもファームウェアをアップデートすることで 13世代まで公式にサポートしてくれるものもあれば、なにもしないでもZ690チップセットマザーボードにそのまま13世代のCPUをのせたら、動いているという事例も数多くあります。ただ、対応がマザーボードやメーカーによっても異なりますので、個別にメーカーに確認していただくか、13世代にはZ790等13世代のためのチップセットを使っていただくのが良いかと思います」

私「なるほど、そういうことなんですね、理解できました。」

この件、これほど、食い下がったのには実は訳があります。

Z690 のマザーボードの方が安いんです。
当たり前かもしれませんが、最新のZ790はマザーボードは実売2万円くらい高い印象です。
だから、Core i5 13600 と Z690 だとバランスが良いとおもったのでした。

でも、質問していろいろ理解が深まったので、結論がでました。

店員さんとも相談して、 Z690マザーボードはZ790よりも安く、性能面でも12世代が13世代に比べてそれほど劣るわけではないため、Z690マザーボードで行くことにしました!

選んだマザーボードは、ASRock Z690 Steel Legend というやつです。3万円台後半で手に入りました!


ついに、1つめのパーツを購入できました!

そして、このマザーボードを選んだことで自動的に、CPUも決定しました!

12世代 i7 12700 に決定です!

同じお店で、CPUもゲットしました!12世代のIntel Corei7 12700Kです!


今回はいかがでしたでしょうか。Junさんは、性能と価格の近い2つのCPUで悩んでいましたが、今回はマザーボードの価格で判断しました。といっても妥協しているわけではなくZ690は12世代のチップセットのなかでは最高のもので、コストパフォーマンスがZ790に対して優れていたため、このような結果となったのでした。

PC自作はトータルバランスが重要です。お金が無限にあるわけではないので、どこに力をいれるか、どこはほどほどで良いか、こういう微調整の連続で、それがまた楽しく自作の醍醐味だと感じています。

さて、次回は、メモリや電源など周辺パーツの選定に移ります!


navigation

Read more

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部