[自作日記7’] コラム:コンシューマ用GPUとプロ用GPUの違い

[自作日記7’] コラム:コンシューマ用GPUとプロ用GPUの違い

今回は、コンシューマー用GPUは本格的なAI計算に使用できるのか、プロ用GPUとの違いは何か。比較も交えながら考えてみたいと思います。

私たちAI ベンチャー(ベンチャーじゃなくても)でGPUを使うシーンは3つあります。

  1. AI研究:最新モデルや論文のちょっとしたお試し
    小規模な学習。小規模な推論。
  2. 学習:いわゆるディープラーニングのトレーニング。
    長いと数週間、数か月におよぶ。
  3. 商用運用:お客様が使用するサービスのバックエンドとしての
    AIエンジンの商用運用

今回 Jun さんが作ろうとしている GPU マシンは 1.AI研究 のためのものです。

というのも、たとえば、コンシューマー用GPUやコンシューマー用の自作パソコンの場合は長時間にわたるディープラーニングのトレーニングには向いていません。

やってる人もたまにみかけますが、心配になります。

なぜなら、学習させたいネットワークにもよりますが、1回の学習にかかる時間は数日から数週間、長いと数か月にわたります。その間、GPUをドライブするソフトウェアが安定的に稼働している必要があります。2,3日なら何の問題もないことが、数週間まわすと謎のソフトウェアバグがドライバ層などで発生して学習が止まっていた、ということはよくあります。
また、マシンが過熱しない、など廃熱系も安定させて稼働するためには、それなりの対策を施す必要があります。

もともとコンシューマー用のGPUは3Dゲームのために設計されており、数週間の連続高負荷は想定されておりません。1回の学習が3,4日程度なら人の目で監視ということも不可能ではないとおもいますが、いずれにしても、手間がかかるものとなります。

そこで今回 Jun さんが開発しているような秋葉原で手に入りそうなパーツで構成された GPUマシンは、長時間高負荷な計算はさせない ことが前提の ”研究用” GPUマシンと位置付けています。

では、プロ用のGPUとは何でしょうか。

プロ用のGPUには大きく2種類あります。

1つは、ワークステーション用GPU。もう1つはデータセンター用GPUです。

ワークステーション用のGPUはコンシューマー用GPUに近い環境で使用されますが、ドライバーの安定性や信頼性、商品の長期サポートなどが特長で、コンシューマー用GPUより高い信頼性があります。また高度な計算のため、計算精度がコンシューマー用GPUに比べて有利です。ワークステーション用として有名かつ人気のGPUには NVIDIA RTX A6000 などがあります。

データセンター用GPUはその名の通り、専用のデータセンター環境で稼働することを前提としているGPU。ワークステーション用のGPUの特長に加え、エネルギー効率(要は消費電力)が高く、高い並列性などが特長になっています。データセンター用GPUとして有名なものには、 NVIDIA RTX A100、NVIDIA RTX H100 などがあり、1枚あたり300万円以上します。データセンター用とはいっても、インタフェースはPCI Express ですので、通常のワークステーションで動作させることも可能です。

このように2や3の用途で ”安心して” 使用する場合には、ワークステーション用のGPUやデータセンター用のGPUが必要になってきます。

GPUサイズと排熱方式と稼働音

今度は排熱という視点で、GPUをみてみましょう。

GPUは高負荷の計算をすることから、その副産物として大量の”熱”を発生させます。そこで、GPUが発する熱をどうやって放出し、GPUが過熱したり燃えたりすることを防ぐか、が重要となります。

この排熱の方式には大きく3つの方式があります

  1. 空冷 - 内排気
  2. 空冷 - 外排気
  3. 水冷

内排気のグラフィックボード

内排気というのは、PCケースの中にグラフィックボードの熱を排気スタイルです。
コンシューマー用GPUでは、1のタイプが多く、一般的に大きなヒートシンクと一つまたは複数のプロペラファンを使用してケース内の広い範囲に熱を拡散します。この方式は比較的安価でグラフィックボードを作れる反面、大型のヒートシンクとファンによりグラフィックボードのサイズが大きくなる傾向にあります。また、次に紹介する外排気型のグラフィックボードに比べて、ファンの稼働音が静かです。

外排気のグラフィックボード

外排気は、PCケースの中ではなく、PCケースの外側に直接、熱された空気を排出する方式です。ワークステーション用やデータセンター用のグラフィックボードは主にこの方式が採用されます。このときによく使用されるファンが”ブロワーファン”です。

ブロワーファンは空気を中心から吸い込み、ブレードを通過させた後にラジアル(放射状)に排出しケース内の空気を一方向に強力(流量)に吹き出すことができます。以前のグラフィックボードでは同様の目的で”シロッコファン”(圧力優先)というファンが取り付けられていましたが最近は流量優先のブロワーファンが採用されています。

この方式では、ファンがケースの一端に取り付けられ、直線的に空気を外に押し出し空気流がGPUのヒートシンクを通過して直接外部へと押し出されるため、冷却効率が高まります。この方式ではケース内に熱を拡散する内排気型とは異なり、グラフィックボードのサイズを小さくすることができます。反面、ブロワファンは稼働音が大きい場合があるので、静音が重視の場合は内排気型がおすすめです。

水冷のグラフィックボード

水冷のグラフィックボードは一部コンシューマー用のラインナップ(簡易水冷)などで見かけることがあります。また大規模データセンターでは、サーバールーム全体の冷却効率を高めるために、水冷システムを導入する場合があります。これにより、大量のGPUを効率的に冷却することが可能ですが、水冷システムの構築には非常に高いコストがかかりますので、あまり一般的ではりません。

GPUサイズと稼働音

排熱方式について、簡単にみてきましたが、サイズと稼働音についてまとめると
外排気型のグラフィックボードだと、安くて、比較的静かだけど、サイズが巨大
内排気型のグラフィックボードだと、高価、排気音が大きい、サイズは小型

となります。

複数枚のグラフィックボードを挿して使いたい場合は、PCI Expressのスロット干渉に悩まなくてよい内排気型のグラフィックボードがオススメです。


navigation

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation