[自作日記7’] コラム:コンシューマ用GPUとプロ用GPUの違い

[自作日記7’] コラム:コンシューマ用GPUとプロ用GPUの違い

今回は、コンシューマー用GPUは本格的なAI計算に使用できるのか、プロ用GPUとの違いは何か。比較も交えながら考えてみたいと思います。

私たちAI ベンチャー(ベンチャーじゃなくても)でGPUを使うシーンは3つあります。

  1. AI研究:最新モデルや論文のちょっとしたお試し
    小規模な学習。小規模な推論。
  2. 学習:いわゆるディープラーニングのトレーニング。
    長いと数週間、数か月におよぶ。
  3. 商用運用:お客様が使用するサービスのバックエンドとしての
    AIエンジンの商用運用

今回 Jun さんが作ろうとしている GPU マシンは 1.AI研究 のためのものです。

というのも、たとえば、コンシューマー用GPUやコンシューマー用の自作パソコンの場合は長時間にわたるディープラーニングのトレーニングには向いていません。

やってる人もたまにみかけますが、心配になります。

なぜなら、学習させたいネットワークにもよりますが、1回の学習にかかる時間は数日から数週間、長いと数か月にわたります。その間、GPUをドライブするソフトウェアが安定的に稼働している必要があります。2,3日なら何の問題もないことが、数週間まわすと謎のソフトウェアバグがドライバ層などで発生して学習が止まっていた、ということはよくあります。
また、マシンが過熱しない、など廃熱系も安定させて稼働するためには、それなりの対策を施す必要があります。

もともとコンシューマー用のGPUは3Dゲームのために設計されており、数週間の連続高負荷は想定されておりません。1回の学習が3,4日程度なら人の目で監視ということも不可能ではないとおもいますが、いずれにしても、手間がかかるものとなります。

そこで今回 Jun さんが開発しているような秋葉原で手に入りそうなパーツで構成された GPUマシンは、長時間高負荷な計算はさせない ことが前提の ”研究用” GPUマシンと位置付けています。

では、プロ用のGPUとは何でしょうか。

プロ用のGPUには大きく2種類あります。

1つは、ワークステーション用GPU。もう1つはデータセンター用GPUです。

ワークステーション用のGPUはコンシューマー用GPUに近い環境で使用されますが、ドライバーの安定性や信頼性、商品の長期サポートなどが特長で、コンシューマー用GPUより高い信頼性があります。また高度な計算のため、計算精度がコンシューマー用GPUに比べて有利です。ワークステーション用として有名かつ人気のGPUには NVIDIA RTX A6000 などがあります。

データセンター用GPUはその名の通り、専用のデータセンター環境で稼働することを前提としているGPU。ワークステーション用のGPUの特長に加え、エネルギー効率(要は消費電力)が高く、高い並列性などが特長になっています。データセンター用GPUとして有名なものには、 NVIDIA RTX A100、NVIDIA RTX H100 などがあり、1枚あたり300万円以上します。データセンター用とはいっても、インタフェースはPCI Express ですので、通常のワークステーションで動作させることも可能です。

このように2や3の用途で ”安心して” 使用する場合には、ワークステーション用のGPUやデータセンター用のGPUが必要になってきます。

GPUサイズと排熱方式と稼働音

今度は排熱という視点で、GPUをみてみましょう。

GPUは高負荷の計算をすることから、その副産物として大量の”熱”を発生させます。そこで、GPUが発する熱をどうやって放出し、GPUが過熱したり燃えたりすることを防ぐか、が重要となります。

この排熱の方式には大きく3つの方式があります

  1. 空冷 - 内排気
  2. 空冷 - 外排気
  3. 水冷

内排気のグラフィックボード

内排気というのは、PCケースの中にグラフィックボードの熱を排気スタイルです。
コンシューマー用GPUでは、1のタイプが多く、一般的に大きなヒートシンクと一つまたは複数のプロペラファンを使用してケース内の広い範囲に熱を拡散します。この方式は比較的安価でグラフィックボードを作れる反面、大型のヒートシンクとファンによりグラフィックボードのサイズが大きくなる傾向にあります。また、次に紹介する外排気型のグラフィックボードに比べて、ファンの稼働音が静かです。

外排気のグラフィックボード

外排気は、PCケースの中ではなく、PCケースの外側に直接、熱された空気を排出する方式です。ワークステーション用やデータセンター用のグラフィックボードは主にこの方式が採用されます。このときによく使用されるファンが”ブロワーファン”です。

ブロワーファンは空気を中心から吸い込み、ブレードを通過させた後にラジアル(放射状)に排出しケース内の空気を一方向に強力(流量)に吹き出すことができます。以前のグラフィックボードでは同様の目的で”シロッコファン”(圧力優先)というファンが取り付けられていましたが最近は流量優先のブロワーファンが採用されています。

この方式では、ファンがケースの一端に取り付けられ、直線的に空気を外に押し出し空気流がGPUのヒートシンクを通過して直接外部へと押し出されるため、冷却効率が高まります。この方式ではケース内に熱を拡散する内排気型とは異なり、グラフィックボードのサイズを小さくすることができます。反面、ブロワファンは稼働音が大きい場合があるので、静音が重視の場合は内排気型がおすすめです。

水冷のグラフィックボード

水冷のグラフィックボードは一部コンシューマー用のラインナップ(簡易水冷)などで見かけることがあります。また大規模データセンターでは、サーバールーム全体の冷却効率を高めるために、水冷システムを導入する場合があります。これにより、大量のGPUを効率的に冷却することが可能ですが、水冷システムの構築には非常に高いコストがかかりますので、あまり一般的ではりません。

GPUサイズと稼働音

排熱方式について、簡単にみてきましたが、サイズと稼働音についてまとめると
外排気型のグラフィックボードだと、安くて、比較的静かだけど、サイズが巨大
内排気型のグラフィックボードだと、高価、排気音が大きい、サイズは小型

となります。

複数枚のグラフィックボードを挿して使いたい場合は、PCI Expressのスロット干渉に悩まなくてよい内排気型のグラフィックボードがオススメです。


navigation

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング