[自作日記7’] コラム:コンシューマ用GPUとプロ用GPUの違い

[自作日記7’] コラム:コンシューマ用GPUとプロ用GPUの違い

今回は、コンシューマー用GPUは本格的なAI計算に使用できるのか、プロ用GPUとの違いは何か。比較も交えながら考えてみたいと思います。

私たちAI ベンチャー(ベンチャーじゃなくても)でGPUを使うシーンは3つあります。

  1. AI研究:最新モデルや論文のちょっとしたお試し
    小規模な学習。小規模な推論。
  2. 学習:いわゆるディープラーニングのトレーニング。
    長いと数週間、数か月におよぶ。
  3. 商用運用:お客様が使用するサービスのバックエンドとしての
    AIエンジンの商用運用

今回 Jun さんが作ろうとしている GPU マシンは 1.AI研究 のためのものです。

というのも、たとえば、コンシューマー用GPUやコンシューマー用の自作パソコンの場合は長時間にわたるディープラーニングのトレーニングには向いていません。

やってる人もたまにみかけますが、心配になります。

なぜなら、学習させたいネットワークにもよりますが、1回の学習にかかる時間は数日から数週間、長いと数か月にわたります。その間、GPUをドライブするソフトウェアが安定的に稼働している必要があります。2,3日なら何の問題もないことが、数週間まわすと謎のソフトウェアバグがドライバ層などで発生して学習が止まっていた、ということはよくあります。
また、マシンが過熱しない、など廃熱系も安定させて稼働するためには、それなりの対策を施す必要があります。

もともとコンシューマー用のGPUは3Dゲームのために設計されており、数週間の連続高負荷は想定されておりません。1回の学習が3,4日程度なら人の目で監視ということも不可能ではないとおもいますが、いずれにしても、手間がかかるものとなります。

そこで今回 Jun さんが開発しているような秋葉原で手に入りそうなパーツで構成された GPUマシンは、長時間高負荷な計算はさせない ことが前提の ”研究用” GPUマシンと位置付けています。

では、プロ用のGPUとは何でしょうか。

プロ用のGPUには大きく2種類あります。

1つは、ワークステーション用GPU。もう1つはデータセンター用GPUです。

ワークステーション用のGPUはコンシューマー用GPUに近い環境で使用されますが、ドライバーの安定性や信頼性、商品の長期サポートなどが特長で、コンシューマー用GPUより高い信頼性があります。また高度な計算のため、計算精度がコンシューマー用GPUに比べて有利です。ワークステーション用として有名かつ人気のGPUには NVIDIA RTX A6000 などがあります。

データセンター用GPUはその名の通り、専用のデータセンター環境で稼働することを前提としているGPU。ワークステーション用のGPUの特長に加え、エネルギー効率(要は消費電力)が高く、高い並列性などが特長になっています。データセンター用GPUとして有名なものには、 NVIDIA RTX A100、NVIDIA RTX H100 などがあり、1枚あたり300万円以上します。データセンター用とはいっても、インタフェースはPCI Express ですので、通常のワークステーションで動作させることも可能です。

このように2や3の用途で ”安心して” 使用する場合には、ワークステーション用のGPUやデータセンター用のGPUが必要になってきます。

GPUサイズと排熱方式と稼働音

今度は排熱という視点で、GPUをみてみましょう。

GPUは高負荷の計算をすることから、その副産物として大量の”熱”を発生させます。そこで、GPUが発する熱をどうやって放出し、GPUが過熱したり燃えたりすることを防ぐか、が重要となります。

この排熱の方式には大きく3つの方式があります

  1. 空冷 - 内排気
  2. 空冷 - 外排気
  3. 水冷

内排気のグラフィックボード

内排気というのは、PCケースの中にグラフィックボードの熱を排気スタイルです。
コンシューマー用GPUでは、1のタイプが多く、一般的に大きなヒートシンクと一つまたは複数のプロペラファンを使用してケース内の広い範囲に熱を拡散します。この方式は比較的安価でグラフィックボードを作れる反面、大型のヒートシンクとファンによりグラフィックボードのサイズが大きくなる傾向にあります。また、次に紹介する外排気型のグラフィックボードに比べて、ファンの稼働音が静かです。

外排気のグラフィックボード

外排気は、PCケースの中ではなく、PCケースの外側に直接、熱された空気を排出する方式です。ワークステーション用やデータセンター用のグラフィックボードは主にこの方式が採用されます。このときによく使用されるファンが”ブロワーファン”です。

ブロワーファンは空気を中心から吸い込み、ブレードを通過させた後にラジアル(放射状)に排出しケース内の空気を一方向に強力(流量)に吹き出すことができます。以前のグラフィックボードでは同様の目的で”シロッコファン”(圧力優先)というファンが取り付けられていましたが最近は流量優先のブロワーファンが採用されています。

この方式では、ファンがケースの一端に取り付けられ、直線的に空気を外に押し出し空気流がGPUのヒートシンクを通過して直接外部へと押し出されるため、冷却効率が高まります。この方式ではケース内に熱を拡散する内排気型とは異なり、グラフィックボードのサイズを小さくすることができます。反面、ブロワファンは稼働音が大きい場合があるので、静音が重視の場合は内排気型がおすすめです。

水冷のグラフィックボード

水冷のグラフィックボードは一部コンシューマー用のラインナップ(簡易水冷)などで見かけることがあります。また大規模データセンターでは、サーバールーム全体の冷却効率を高めるために、水冷システムを導入する場合があります。これにより、大量のGPUを効率的に冷却することが可能ですが、水冷システムの構築には非常に高いコストがかかりますので、あまり一般的ではりません。

GPUサイズと稼働音

排熱方式について、簡単にみてきましたが、サイズと稼働音についてまとめると
外排気型のグラフィックボードだと、安くて、比較的静かだけど、サイズが巨大
内排気型のグラフィックボードだと、高価、排気音が大きい、サイズは小型

となります。

複数枚のグラフィックボードを挿して使いたい場合は、PCI Expressのスロット干渉に悩まなくてよい内排気型のグラフィックボードがオススメです。


navigation

Read more

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング
ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

11月に入り、朝晩の冷え込みが本格的になってきましたね。オフィスでも暖房を入れ始めた方も多いのではないでしょうか。 温かいコーヒーを片手に、シリーズ第4回「プロキシサーバーと統合Windows認証」をお届けします。 さて、前回(第3回)は、クライアントPCやサーバーをドメインに参加させる際の「信頼関係」の確立について深掘りしました。コンピューターアカウントが120文字のパスワードで自動認証される仕組みを理解いただけたことで、今回のプロキシサーバーの話もスムーズに入っていけるはずです。 ChatGPTやClaudeへのアクセスを監視する中間プロキシを構築する際、最も重要なのが「確実なユーザー特定」です。せっかくHTTPS通信をインターセプトして入出力内容を記録できても、アクセス元が「tanaka_t」なのか「yamada_h」なのかが分からなければ、監査ログとしての価値は半減してしまいます。 今回は、プロキシサーバー自体をドメインメンバーとして動作させることで、Kerberosチケットの検証を可能にし、透過的なユーザー認証を実現する方法を詳しく解説します。Windows版Squid

By Qualiteg AIセキュリティチーム
エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部