[AI新規事業創出]AIを活用した新規事業開発のステップ: 市場分析におけるAIの活用方法

市場分析においては、自社の得意な市場と顧客ニーズを理解することが重要です。AIを用いて既存のデータから深い洞察を得ることで、競合分析や市場トレンドの予測が可能になります。これにより、新規事業アイディアが市場に適合するかを評価し、革新をもたらすことができます。

[AI新規事業創出]AIを活用した新規事業開発のステップ: 市場分析におけるAIの活用方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


"自社の得意領域市場"のニーズを理解する

市場分析の最初のステップは、ターゲットとなる市場が直面している問題やニーズを理解することです。ターゲットとする市場はどこかといいますと、皆さまブルーオーシャン戦略がお好きな方も多いのですが、

Qualitegでは

自社で既に販売されているサービスや商品の市場や顧客を狙っていくことが重要

だと考えています。

長年にわたり自社で事業を行ってきたチャネルはまさに自社の資産であり、強みなのです。

多くの企業が新規市場の開拓に目を向けがちですが、実は既存の市場や顧客ベース内に大きな成長の機会が眠っていることが少なくありません。AIを活用することで、これらの機会を効率的に見出し、自社の強みを最大限に活かすことができるのです。

そのため、その強みを活かしてそこにAIを組み合わせていくことが事業展開として有効なビジネスを実行していく鍵となります。

ここではAIを活用した自社の強みの再発見方法についてお伝えしましょう。

(1) 顧客フィードバックの分析:

自然言語処理(NLP)を用いて、大量の顧客レビューやフィードバックを分析し、自社製品・サービスの強みを客観的に把握します。

(2) 内部データの活用:

営業データや顧客サポートデータをAIで分析し、自社の隠れた強みや改善点を見出します。

(3) 業務プロセスの効率性分析:

AIを活用して社内の業務プロセスを詳細に分析します。これにより、他社と比較して特に効率的な業務領域を特定し、それを強みとして活かすことができます。例えば、受注から配送までの時間が業界平均よりも大幅に短いことが判明すれば、それを強みとしてマーケティングに活用できます。

AIを活用する方法は、様々あります。

例えば、コールセンターの問合せデータ、ソーシャルメディアの投稿、オンラインレビュー、フォーラムの議論など、大量の非構造化データから有用な情報を抽出し、分析することができます。自然言語処理(NLP)技術を用いることで、消費者の感情や意見を定量化し、市場のニーズをより深く理解することが可能になります。

もっとカジュアルなものであれば、顧客対応や社内社員向け対応チャットボットなどがイメージしやすいでしょう。

まずは自社で把握している顧客情報の整理、ターゲット市場の見極めから着手されることをお勧めします。

イノベーションは、個別の施策ではなく、包括的なアプローチで実現するものです。株式会社Qualitegの Innovation-Crossは、革新創出の全体像を捉える統合的な共創支援プログラム。企業の現状を多角的に分析し、戦略、組織、プロセス、技術、文化など全領域を視野に入れた革新戦略を策定します。アイデアワークショップやハッカソン企画で創造性を刺激しながら、オープンイノベーションやパートナー開拓で「自社だけでは実現困難」な統合的変革を推進。

最先端AI技術の活用支援も含め、経験豊富な専門コンサルタントが、個々の取り組みをつなぎ合わせ、相乗効果を生み出す共創プロセスを設計します。部分最適ではなく全体最適の視点で、企業の革新力を包括的に高める—ホリスティックなアプローチこそが、真のイノベーションを生み出す源泉です。

AIを活用して”他国も含めた競合分析”の強化を

ターゲット市場が確定したら、次は競合状況の把握です。

直接的な競合企業のプレスリリースなどを見て確認することもできますが、AIを用いることで、類似業界の海外競合他社が市場でどのような戦略を取っているかを詳細に分析できます。

多くの日系企業のクライアント様は英語や中国語などでリサーチができないとコンサルティング企業に調査を発注されるケースも多いようです。しかし、時間をかけてお金をかけてコンサルティング企業に調査を依頼しなくても、今ではAIを活用すれば例えば、米国の先行企業のプレスリリース、ウェブサイトやソーシャルメディアの活動を分析し、彼らがどのようなキャンペーンを実施しているか、どの製品やサービスが人気を博しているかなどの洞察を多言語を含めて得ることができます。

これにより、市場のギャップを特定し、自社の製品やサービスが満たすべきニーズを明らかにすることができます。

person in blue shirt writing on white paper

トレンドの予測

AIは、市場トレンドの予測にも非常に有効です。過去のデータから未来のトレンドを予測するために訓練することができます。新規事業のアイディアが現在の市場トレンドに適合しているか、あるいは将来的に需要が高まる分野に焦点を当てているかを評価することもできます。

まとめ

AIを活用した市場分析は、新規事業開発プロセスにおいて非常に重要な役割を果たします。AI技術により、大量のデータから有用な洞察を得ることができ、これにより市場のニーズやトレンドをより正確に理解することができます。この深い理解をもとに、新規事業のアイディアを生み出し、市場に革新をもたらすことが可能になります。

新規事業を開発する際は、市場分析におけるAIの活用を積極的に検討し、その強力な分析能力を最大限に活用してください。AIの様々な可能性により、あなたのビジネスがスピードアップし、次のレベルへと進化することでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


 navigation

Read more

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部
Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部