[AI新規事業創出]AIを活用した新規事業開発のステップ: 市場分析におけるAIの活用方法

市場分析においては、自社の得意な市場と顧客ニーズを理解することが重要です。AIを用いて既存のデータから深い洞察を得ることで、競合分析や市場トレンドの予測が可能になります。これにより、新規事業アイディアが市場に適合するかを評価し、革新をもたらすことができます。

[AI新規事業創出]AIを活用した新規事業開発のステップ: 市場分析におけるAIの活用方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


"自社の得意領域市場"のニーズを理解する

市場分析の最初のステップは、ターゲットとなる市場が直面している問題やニーズを理解することです。ターゲットとする市場はどこかといいますと、皆さまブルーオーシャン戦略がお好きな方も多いのですが、

Qualitegでは

自社で既に販売されているサービスや商品の市場や顧客を狙っていくことが重要

だと考えています。

長年にわたり自社で事業を行ってきたチャネルはまさに自社の資産であり、強みなのです。

多くの企業が新規市場の開拓に目を向けがちですが、実は既存の市場や顧客ベース内に大きな成長の機会が眠っていることが少なくありません。AIを活用することで、これらの機会を効率的に見出し、自社の強みを最大限に活かすことができるのです。

そのため、その強みを活かしてそこにAIを組み合わせていくことが事業展開として有効なビジネスを実行していく鍵となります。

ここではAIを活用した自社の強みの再発見方法についてお伝えしましょう。

(1) 顧客フィードバックの分析:

自然言語処理(NLP)を用いて、大量の顧客レビューやフィードバックを分析し、自社製品・サービスの強みを客観的に把握します。

(2) 内部データの活用:

営業データや顧客サポートデータをAIで分析し、自社の隠れた強みや改善点を見出します。

(3) 業務プロセスの効率性分析:

AIを活用して社内の業務プロセスを詳細に分析します。これにより、他社と比較して特に効率的な業務領域を特定し、それを強みとして活かすことができます。例えば、受注から配送までの時間が業界平均よりも大幅に短いことが判明すれば、それを強みとしてマーケティングに活用できます。

AIを活用する方法は、様々あります。

例えば、コールセンターの問合せデータ、ソーシャルメディアの投稿、オンラインレビュー、フォーラムの議論など、大量の非構造化データから有用な情報を抽出し、分析することができます。自然言語処理(NLP)技術を用いることで、消費者の感情や意見を定量化し、市場のニーズをより深く理解することが可能になります。

もっとカジュアルなものであれば、顧客対応や社内社員向け対応チャットボットなどがイメージしやすいでしょう。

まずは自社で把握している顧客情報の整理、ターゲット市場の見極めから着手されることをお勧めします。

イノベーションは、個別の施策ではなく、包括的なアプローチで実現するものです。株式会社Qualitegの Innovation-Crossは、革新創出の全体像を捉える統合的な共創支援プログラム。企業の現状を多角的に分析し、戦略、組織、プロセス、技術、文化など全領域を視野に入れた革新戦略を策定します。アイデアワークショップやハッカソン企画で創造性を刺激しながら、オープンイノベーションやパートナー開拓で「自社だけでは実現困難」な統合的変革を推進。

最先端AI技術の活用支援も含め、経験豊富な専門コンサルタントが、個々の取り組みをつなぎ合わせ、相乗効果を生み出す共創プロセスを設計します。部分最適ではなく全体最適の視点で、企業の革新力を包括的に高める—ホリスティックなアプローチこそが、真のイノベーションを生み出す源泉です。

AIを活用して”他国も含めた競合分析”の強化を

ターゲット市場が確定したら、次は競合状況の把握です。

直接的な競合企業のプレスリリースなどを見て確認することもできますが、AIを用いることで、類似業界の海外競合他社が市場でどのような戦略を取っているかを詳細に分析できます。

多くの日系企業のクライアント様は英語や中国語などでリサーチができないとコンサルティング企業に調査を発注されるケースも多いようです。しかし、時間をかけてお金をかけてコンサルティング企業に調査を依頼しなくても、今ではAIを活用すれば例えば、米国の先行企業のプレスリリース、ウェブサイトやソーシャルメディアの活動を分析し、彼らがどのようなキャンペーンを実施しているか、どの製品やサービスが人気を博しているかなどの洞察を多言語を含めて得ることができます。

これにより、市場のギャップを特定し、自社の製品やサービスが満たすべきニーズを明らかにすることができます。

person in blue shirt writing on white paper

トレンドの予測

AIは、市場トレンドの予測にも非常に有効です。過去のデータから未来のトレンドを予測するために訓練することができます。新規事業のアイディアが現在の市場トレンドに適合しているか、あるいは将来的に需要が高まる分野に焦点を当てているかを評価することもできます。

まとめ

AIを活用した市場分析は、新規事業開発プロセスにおいて非常に重要な役割を果たします。AI技術により、大量のデータから有用な洞察を得ることができ、これにより市場のニーズやトレンドをより正確に理解することができます。この深い理解をもとに、新規事業のアイディアを生み出し、市場に革新をもたらすことが可能になります。

新規事業を開発する際は、市場分析におけるAIの活用を積極的に検討し、その強力な分析能力を最大限に活用してください。AIの様々な可能性により、あなたのビジネスがスピードアップし、次のレベルへと進化することでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


 navigation

Read more

AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング