NVIDIA GPU と Capability Level

NVIDIA GPU と Capability Level
Photo by Andrey Matveev / Unsplash

NVIDIA GPU の Capability Level の一覧です。

推論エンジンがサポートする各種アクセラレーション機能は Capability Level により搭載されるハードウェアアクセラレータや専用機能が異なります。

データセンター/プロ向けGPU GeForce GPU Capability Level 世代名
- GeForce RTX 5090 120 Blackwell
- GeForce RTX 5080 120 Blackwell
- GeForce RTX 5070 120 Blackwell
- GeForce RTX 5060 120 Blackwell
NVIDIA B200 - 100 Blackwell
NVIDIA B100 - 100 Blackwell
NVIDIA H200 - 90 Hopper
NVIDIA H100 - 90 Hopper
NVIDIA L4 - 89 Ada Lovelace
NVIDIA L40 - 89 Ada Lovelace
RTX 6000 Ada Generation - 89 Ada Lovelace
RTX 5000 Ada Generation - 89 Ada Lovelace
RTX 4000 Ada Generation - 89 Ada Lovelace
RTX 3000 Ada Generation - 89 Ada Lovelace
- GeForce RTX 4090 89 Ada Lovelace
- GeForce RTX 4080 89 Ada Lovelace
- GeForce RTX 4070 Ti / 4070 89 Ada Lovelace
- GeForce RTX 4060 Ti / 4060 89 Ada Lovelace
- GeForce RTX 4050 89 Ada Lovelace
NVIDIA A40 - 86 Ampere
NVIDIA A10 - 86 Ampere
NVIDIA A16 - 86 Ampere
NVIDIA A2 - 86 Ampere
RTX A6000 - 86 Ampere
RTX A5000 - 86 Ampere
RTX A4000 - 86 Ampere
RTX A3000 - 86 Ampere
RTX A2000 - 86 Ampere
RTX A1000 - 86 Ampere
- GeForce RTX 3090 Ti / 3090 86 Ampere
- GeForce RTX 3080 Ti / 3080 86 Ampere
- GeForce RTX 3070 Ti / 3070 86 Ampere
- GeForce RTX 3060 Ti / 3060 86 Ampere
- GeForce RTX 3050 Ti / 3050 86 Ampere
NVIDIA A100 - 80 Ampere
NVIDIA A30 - 80 Ampere
NVIDIA T4 - 75 Turing
T400 - 75 Turing
Quadro RTX 8000 - 75 Turing
Quadro RTX 6000 - 75 Turing
Quadro RTX 5000 - 75 Turing
Quadro RTX 4000 - 75 Turing
RTX 5000 - 75 Turing
RTX 4000 - 75 Turing
RTX 3000 - 75 Turing
T2000 - 75 Turing
T1200 - 75 Turing
T1000 - 75 Turing
T600 - 75 Turing
T500 - 75 Turing
NVIDIA TITAN RTX - 75 Turing
- GeForce RTX 2080 Ti / 2080 Super / 2080 75 Turing
- GeForce RTX 2070 Super / 2070 75 Turing
- GeForce RTX 2060 Super / 2060 75 Turing
- GeForce GTX 1660 Ti / 1660 Super / 1660 75 Turing
- GeForce GTX 1650 Super / 1650 Ti / 1650 75 Turing
NVIDIA V100 - 70 Volta
Quadro GV100 - 70 Volta
NVIDIA TITAN V - 70 Volta

Read more

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部