NVIDIA GPU と Capability Level

NVIDIA GPU と Capability Level
Photo by Andrey Matveev / Unsplash

NVIDIA GPU の Capability Level の一覧です。

推論エンジンがサポートする各種アクセラレーション機能は Capability Level により搭載されるハードウェアアクセラレータや専用機能が異なります。

データセンター/プロ向けGPU GeForce GPU Capability Level 世代名
NVIDIA B200 - 100 Blackwell
NVIDIA B100 - 100 Blackwell
NVIDIA H200 - 90 Hopper
NVIDIA H100 - 90 Hopper
NVIDIA L4 - 89 Ada Lovelace
NVIDIA L40 - 89 Ada Lovelace
RTX 6000 Ada Generation - 89 Ada Lovelace
RTX 5000 Ada Generation - 89 Ada Lovelace
RTX 4000 Ada Generation - 89 Ada Lovelace
RTX 3000 Ada Generation - 89 Ada Lovelace
- GeForce RTX 4090 89 Ada Lovelace
- GeForce RTX 4080 89 Ada Lovelace
- GeForce RTX 4070 Ti / 4070 89 Ada Lovelace
- GeForce RTX 4060 Ti / 4060 89 Ada Lovelace
- GeForce RTX 4050 89 Ada Lovelace
NVIDIA A40 - 86 Ampere
NVIDIA A10 - 86 Ampere
NVIDIA A16 - 86 Ampere
NVIDIA A2 - 86 Ampere
RTX A6000 - 86 Ampere
RTX A5000 - 86 Ampere
RTX A4000 - 86 Ampere
RTX A3000 - 86 Ampere
RTX A2000 - 86 Ampere
RTX A1000 - 86 Ampere
- GeForce RTX 3090 Ti / 3090 86 Ampere
- GeForce RTX 3080 Ti / 3080 86 Ampere
- GeForce RTX 3070 Ti / 3070 86 Ampere
- GeForce RTX 3060 Ti / 3060 86 Ampere
- GeForce RTX 3050 Ti / 3050 86 Ampere
NVIDIA A100 - 80 Ampere
NVIDIA A30 - 80 Ampere
NVIDIA T4 - 75 Turing
T400 - 75 Turing
Quadro RTX 8000 - 75 Turing
Quadro RTX 6000 - 75 Turing
Quadro RTX 5000 - 75 Turing
Quadro RTX 4000 - 75 Turing
RTX 5000 - 75 Turing
RTX 4000 - 75 Turing
RTX 3000 - 75 Turing
T2000 - 75 Turing
T1200 - 75 Turing
T1000 - 75 Turing
T600 - 75 Turing
T500 - 75 Turing
NVIDIA TITAN RTX - 75 Turing
- GeForce RTX 2080 Ti / 2080 Super / 2080 75 Turing
- GeForce RTX 2070 Super / 2070 75 Turing
- GeForce RTX 2060 Super / 2060 75 Turing
- GeForce GTX 1660 Ti / 1660 Super / 1660 75 Turing
- GeForce GTX 1650 Super / 1650 Ti / 1650 75 Turing
NVIDIA V100 - 70 Volta
Quadro GV100 - 70 Volta
NVIDIA TITAN V - 70 Volta

Read more

フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

1. 位置損失 (L_position) - 口の形の正確さ 時間 口の開き 正解 予測 L_position = Σᵢ wᵢ × ||y_pred - y_true||² 各時点での予測値と正解値の差を計算。重要なパラメータ(顎の開き、口の開き)には大きな重みを付けます。 jaw_open: ×2.0 mouth_open: ×2.0 その他: ×1.0 2. 速度損失 (L_velocity) - 動きの速さ 時間 速度 t→t+1 v = y[t] -

By Qualiteg 研究部, Qualiteg コンサルティング