[AI新規事業創出]生成AIを活用してオフィス業務を効率化する方法

MicheleはQualiteg blogで、AIを活用した新規事業やマーケティングに関する質問に答えています。特に多いのが、「ChatGPTを使って業務効率化をどう始めればいいか」という問い合わせです。彼女は、社内文書の自動生成からAI導入を始めることを推奨しており、カスタマーサポート業務の効率化にも大きな効果があると説明しています。また、バックオフィス業務改革を最初のステップとしてお勧めしています。

[AI新規事業創出]生成AIを活用してオフィス業務を効率化する方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


さて、生成AIさん、何から手を付けましょうか

生成AIを活用したいとご相談をいただくお客様の中で一番多いご相談がずばりこちらです。

「役員から、うちもAIで業務効率化をしろと言われたけど、何ができるの?何からやったらいいの?」

コストや生産性、または売上に直結する効果がどのくらいあるのか、簡単に社内に導入できそうなのか、まずは何から始めるべきなのか、そのようなお問い合わせを、特に今年に入ってから数多くいただいております。

各企業様のビジネス状況に沿った内容で生成AIの導入ができるように、お客様ともに組織体制などを踏まえディスカッションしながらアドバイスさせていただいております。

まずは自動文書生成からスタート

多くのオフィスでは、報告書、提案書、Eメールの作成に多くの時間が割かれています。生成AIを活用することで、これらの文書をテンプレートから瞬時に生成し、カスタマイズすることが可能になります。たとえば、AIを用いて業務報告書の草稿を生成し、必要なデータを挿入するだけで完璧な報告書が完成します。これにより、文書作成にかかる時間と労力を大幅に削減できますので、まずはトライアル的に社内文章生成から生成AI導入をしていただくことをお勧めしています。

壮大なビジョンも、実現への道筋がなければ絵に描いた餅に終わります。株式会社Qualitegの Innovation-Crossは、企業のビジョンを共創によって具現化するプログラム。現状分析を通じてビジョン実現への障壁を特定し、「自社だけでは超えられない」ギャップを埋める戦略を策定します。

アイデアワークショップで社内のビジョン共有と創造的解決策の探索を促進し、オープンイノベーションやパートナー開拓で外部の革新的リソースを活用。最先端AI技術の導入支援も含め、経験豊富な専門コンサルタントが、ビジョンから実行計画、そして具体的な成果へと導く共創プロセスを設計します。理想と現実を結ぶ架け橋を、共に創り上げましょう。

コストに効いてくるのはカスタマーサポート業務改革

生成AIに代表されるチャットボットを活用することで、従来のカスタマーサポート業務やお客様との接点をもつような業務を大幅に効率化することが可能です。顧客からの問い合わせに対する応答も、生成AIを利用することで効率化できます。AIが顧客の質問に対して即座に適切な回答を生成し、サポートチームの負担を軽減します。カスタマーサポート業務のメンバーはモンスターカスタマーの対応などで疲弊するというケースが多いと聞きますが、AIチャットを導入されてカスタマーサポート社員のストレスも減り、職場定着率も向上したというお話もよく聞きます。

woman in black headphones holding black and silver headphones

業務効率化、従業員満足度向上に加え、顧客満足度向上にも貢献

また、業務効率化や従業員の満足度を上げるだけではなく、顧客満足度の向上にも繋がります。お客様もチャットで選択肢などクリアな状態で対話できるので、従来のようなカスタマーサポートの電話がつながらないというようなストレスから解消されたというお声も伺っております。

バックオフィス業務改革から生成AI導入を始める企業様が多いです

初めての生成AIで顧客向けの導入が不安な場合は、社内向けのバックオフィス業務改革がおすすめです。生成AIを活用することで、人事や総務部門の業務改善が期待できます。特に、従業員からの日常的な問い合わせに対して、AIが自動で回答を生成し提供することにより、即時性と正確性をもって対応可能となります。また、AIが頻繁な問い合わせのパターンを学習し、より効率的な対応策を提案することで、業務のスピードと品質が向上します。このように、生成AIの導入は、バックオフィス業務の負担を軽減し、より戦略的な業務にリソースを集中させることを可能にします。

当社のChatStreamも現在無料でお使いいただけるキャンペーン中ですので是非お試しいただければと思います。

特にテレワークになったこともあり、部署の庶務さんなどにいちいち質問するのも気後れしていたというZ世代の社員さんからとても好評だというお客様の声も多く伺っています。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部