[AI新規事業創出]生成AIを活用してオフィス業務を効率化する方法

MicheleはQualiteg blogで、AIを活用した新規事業やマーケティングに関する質問に答えています。特に多いのが、「ChatGPTを使って業務効率化をどう始めればいいか」という問い合わせです。彼女は、社内文書の自動生成からAI導入を始めることを推奨しており、カスタマーサポート業務の効率化にも大きな効果があると説明しています。また、バックオフィス業務改革を最初のステップとしてお勧めしています。

[AI新規事業創出]生成AIを活用してオフィス業務を効率化する方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


さて、生成AIさん、何から手を付けましょうか

生成AIを活用したいとご相談をいただくお客様の中で一番多いご相談がずばりこちらです。

「役員から、うちもAIで業務効率化をしろと言われたけど、何ができるの?何からやったらいいの?」

コストや生産性、または売上に直結する効果がどのくらいあるのか、簡単に社内に導入できそうなのか、まずは何から始めるべきなのか、そのようなお問い合わせを、特に今年に入ってから数多くいただいております。

各企業様のビジネス状況に沿った内容で生成AIの導入ができるように、お客様ともに組織体制などを踏まえディスカッションしながらアドバイスさせていただいております。

まずは自動文書生成からスタート

多くのオフィスでは、報告書、提案書、Eメールの作成に多くの時間が割かれています。生成AIを活用することで、これらの文書をテンプレートから瞬時に生成し、カスタマイズすることが可能になります。たとえば、AIを用いて業務報告書の草稿を生成し、必要なデータを挿入するだけで完璧な報告書が完成します。これにより、文書作成にかかる時間と労力を大幅に削減できますので、まずはトライアル的に社内文章生成から生成AI導入をしていただくことをお勧めしています。

壮大なビジョンも、実現への道筋がなければ絵に描いた餅に終わります。株式会社Qualitegの Innovation-Crossは、企業のビジョンを共創によって具現化するプログラム。現状分析を通じてビジョン実現への障壁を特定し、「自社だけでは超えられない」ギャップを埋める戦略を策定します。

アイデアワークショップで社内のビジョン共有と創造的解決策の探索を促進し、オープンイノベーションやパートナー開拓で外部の革新的リソースを活用。最先端AI技術の導入支援も含め、経験豊富な専門コンサルタントが、ビジョンから実行計画、そして具体的な成果へと導く共創プロセスを設計します。理想と現実を結ぶ架け橋を、共に創り上げましょう。

コストに効いてくるのはカスタマーサポート業務改革

生成AIに代表されるチャットボットを活用することで、従来のカスタマーサポート業務やお客様との接点をもつような業務を大幅に効率化することが可能です。顧客からの問い合わせに対する応答も、生成AIを利用することで効率化できます。AIが顧客の質問に対して即座に適切な回答を生成し、サポートチームの負担を軽減します。カスタマーサポート業務のメンバーはモンスターカスタマーの対応などで疲弊するというケースが多いと聞きますが、AIチャットを導入されてカスタマーサポート社員のストレスも減り、職場定着率も向上したというお話もよく聞きます。

woman in black headphones holding black and silver headphones

業務効率化、従業員満足度向上に加え、顧客満足度向上にも貢献

また、業務効率化や従業員の満足度を上げるだけではなく、顧客満足度の向上にも繋がります。お客様もチャットで選択肢などクリアな状態で対話できるので、従来のようなカスタマーサポートの電話がつながらないというようなストレスから解消されたというお声も伺っております。

バックオフィス業務改革から生成AI導入を始める企業様が多いです

初めての生成AIで顧客向けの導入が不安な場合は、社内向けのバックオフィス業務改革がおすすめです。生成AIを活用することで、人事や総務部門の業務改善が期待できます。特に、従業員からの日常的な問い合わせに対して、AIが自動で回答を生成し提供することにより、即時性と正確性をもって対応可能となります。また、AIが頻繁な問い合わせのパターンを学習し、より効率的な対応策を提案することで、業務のスピードと品質が向上します。このように、生成AIの導入は、バックオフィス業務の負担を軽減し、より戦略的な業務にリソースを集中させることを可能にします。

当社のChatStreamも現在無料でお使いいただけるキャンペーン中ですので是非お試しいただければと思います。

特にテレワークになったこともあり、部署の庶務さんなどにいちいち質問するのも気後れしていたというZ世代の社員さんからとても好評だというお客様の声も多く伺っています。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング