[AI新規事業創出]Qualitegセレクション:アイディア創造編①Qualiteg式オンラインブレストの活用術

[AI新規事業創出]Qualitegセレクション:アイディア創造編①Qualiteg式オンラインブレストの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


今日は私のお気に入りのブレスト方法である「Qualiteg式オンラインブレスト」の活用術についてお話ししたいと思います。

場所を変えて気分を変えても良いアイディアは生まれない!?

よく、「金曜日は1日ブレストしよう!」という上司の掛け声とともに、いつもと違う雰囲気なら良いアイディアも出るかもしれないといってホテルの会議室などを予約されて1日缶詰でブレストしたが、期待する結果が出なかったとおっしゃるクライアントが非常に多いです。

ブレインストーミングは複数の参加者が自由にアイデアを出し合うことで、新しい発想や解決策を見つける手法です。

批判や評価を一時的に排除し、量を重視して多くのアイデアを集めることが目的です。1950年代に広告業界で生まれたこの手法は、創造性を促進し、チームの協力を強化するために広く利用されています。

現在では、オンラインツールを活用してリモート環境でも効果的に実施されています。

私は、ずばり、F2Fでのオンラインブレストをお勧めします。

みなさんでパソコンを持ち寄り会議室に来ていただいて、SlackやTeamsなどのチャットツールに黙々と書いていただく、これがQualiteg式のオンラインブレストです。

まず、会議室に集まっていただき、ブレストを開始する前に、明確な目的を設定することが重要です。チーム全員が共有できる具体的な目標を定め、その目標に向かって議論を進めることで、効率的かつ効果的なブレストが実現します。

例えば今日は「「スマートシティ関連の新規事業を自社でやるには」というテーマで「地域貢献、地方再生、データ活用」の3つの分類からそれぞれ20案以上出しましょう」という形でブレストの方向性や出すべきアイディアのテーマなどを共有します。

イノベーションの道筋は、企業ごとに異なります。株式会社Qualitegの Innovation-Crossは、御社の独自性を尊重した柔軟な共創支援プログラム。企業の現状と課題を丁寧に分析し、ニーズに合わせたカスタマイズされた戦略を策定します。アイデアワークショップ、ハッカソン企画、新規事業ワークショップ、AI技術活用など、多様なサービスメニューから御社に最適な組み合わせを提案し、外部との協業による革新創出を包括的にサポート。

「自社だけでは難しい」イノベーションを、御社のペースとスタイルに合わせて実現します。業界特性や企業文化を深く理解した経験豊富な専門コンサルタントが、御社の革新創出の旅に柔軟に寄り添います。

忖度不要のアイディア発言ができます

発言型のブレストだと、話したい人が永遠に話す、上司の意見に忖度して、部下が発言を言えない、こんなことを言ったらおかしいと思われてしまうかも、というように空気を読みすぎてしまって、アイディアを出しづらいということが多いと思います。

ブレストの成功には、参加者全員の積極的なエンゲージメントが不可欠です。発言型ブレストの場合、リーダークラス、もしくはその領域に詳しい人がファシリテーションをすることが多いので、その方は順番に発言する人を当てたり、メモを書いたり、自分は意見を言えなかったりなど、かなり負荷がかかりますよね。

ファシリテーターは全員が意見を出しやすい雰囲気を作り、誰もが発言できる機会を均等に与えるよう努めていると思います。また、アイデアを否定せず、全ての意見を尊重する姿勢が大切ですから、そのように運用してくださっていると思います。

man in black long sleeve shirt standing beside woman in red and white plaid dress shirt

しかしながら、Qualiteg式のオンラインブレストはファシリテーターの気遣いも不要ながら、参加者全員の積極的なアイディア創出が可能なのです。

ファリシテート不要で全員参加型のエンゲージメントあるブレストに

「地域貢献型スマートシティのアイディアを一人あたり5個以上、10分間記入してください。」このようにお伝えすると皆さん、画面に向かってしっかり書いてくださいます。

他の方が書いたものと重複してもOKですし、無言で皆さん書き込まれるので、上司が話している間待って自分が発言する必要もありません。

何よりも意見一つ一つに気を遣ってコメントしたり、ポストイットに書き写したりする時間が無いのに、後で一覧性があり、分類したりするにも楽になるので、このやり方はとってもおすすめです。

特に20代の社員の方や、エンジニアの方が多い組織では非常に好評で、「周りに気を遣わないで自分の言いたいことが言えた」という満足度も高いです。

また、他の方のアイディアに乗って更なるアイディアもどんどん書き込めるのもこのQualiteg式のオンラインブレストの特長です。ぜひ皆様試してみてくださいね。ご感想をお待ちしております。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング