[AI新規事業創出]Qualitegセレクション:アイディア創造編①Qualiteg式オンラインブレストの活用術

[AI新規事業創出]Qualitegセレクション:アイディア創造編①Qualiteg式オンラインブレストの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


今日は私のお気に入りのブレスト方法である「Qualiteg式オンラインブレスト」の活用術についてお話ししたいと思います。

場所を変えて気分を変えても良いアイディアは生まれない!?

よく、「金曜日は1日ブレストしよう!」という上司の掛け声とともに、いつもと違う雰囲気なら良いアイディアも出るかもしれないといってホテルの会議室などを予約されて1日缶詰でブレストしたが、期待する結果が出なかったとおっしゃるクライアントが非常に多いです。

ブレインストーミングは複数の参加者が自由にアイデアを出し合うことで、新しい発想や解決策を見つける手法です。

批判や評価を一時的に排除し、量を重視して多くのアイデアを集めることが目的です。1950年代に広告業界で生まれたこの手法は、創造性を促進し、チームの協力を強化するために広く利用されています。

現在では、オンラインツールを活用してリモート環境でも効果的に実施されています。

私は、ずばり、F2Fでのオンラインブレストをお勧めします。

みなさんでパソコンを持ち寄り会議室に来ていただいて、SlackやTeamsなどのチャットツールに黙々と書いていただく、これがQualiteg式のオンラインブレストです。

まず、会議室に集まっていただき、ブレストを開始する前に、明確な目的を設定することが重要です。チーム全員が共有できる具体的な目標を定め、その目標に向かって議論を進めることで、効率的かつ効果的なブレストが実現します。

例えば今日は「「スマートシティ関連の新規事業を自社でやるには」というテーマで「地域貢献、地方再生、データ活用」の3つの分類からそれぞれ20案以上出しましょう」という形でブレストの方向性や出すべきアイディアのテーマなどを共有します。

忖度不要のアイディア発言ができます

発言型のブレストだと、話したい人が永遠に話す、上司の意見に忖度して、部下が発言を言えない、こんなことを言ったらおかしいと思われてしまうかも、というように空気を読みすぎてしまって、アイディアを出しづらいということが多いと思います。

ブレストの成功には、参加者全員の積極的なエンゲージメントが不可欠です。発言型ブレストの場合、リーダークラス、もしくはその領域に詳しい人がファシリテーションをすることが多いので、その方は順番に発言する人を当てたり、メモを書いたり、自分は意見を言えなかったりなど、かなり負荷がかかりますよね。

ファシリテーターは全員が意見を出しやすい雰囲気を作り、誰もが発言できる機会を均等に与えるよう努めていると思います。また、アイデアを否定せず、全ての意見を尊重する姿勢が大切ですから、そのように運用してくださっていると思います。

man in black long sleeve shirt standing beside woman in red and white plaid dress shirt

しかしながら、Qualiteg式のオンラインブレストはファシリテーターの気遣いも不要ながら、参加者全員の積極的なアイディア創出が可能なのです。

ファリシテート不要で全員参加型のエンゲージメントあるブレストに

「地域貢献型スマートシティのアイディアを一人あたり5個以上、10分間記入してください。」このようにお伝えすると皆さん、画面に向かってしっかり書いてくださいます。

他の方が書いたものと重複してもOKですし、無言で皆さん書き込まれるので、上司が話している間待って自分が発言する必要もありません。

何よりも意見一つ一つに気を遣ってコメントしたり、ポストイットに書き写したりする時間が無いのに、後で一覧性があり、分類したりするにも楽になるので、このやり方はとってもおすすめです。

特に20代の社員の方や、エンジニアの方が多い組織では非常に好評で、「周りに気を遣わないで自分の言いたいことが言えた」という満足度も高いです。

また、他の方のアイディアに乗って更なるアイディアもどんどん書き込めるのもこのQualiteg式のオンラインブレストの特長です。ぜひ皆様試してみてくださいね。ご感想をお待ちしております。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部