【GPT4o対応】OpenAI API のPythonサンプルコードと出力例

【GPT4o対応】OpenAI API のPythonサンプルコードと出力例
Photo by Fotis Fotopoulos / Unsplash

今回は、OpenAI の API 利用サンプルコードをご紹介します。

OpenAI API は OpenAI純正のAPI のみならず、vLLMなど他の推論エンジンでも OpenAI 準拠のAPIサーバーが公開されており、LLMサービングAPIのデファクトとなりつつありますので、コーディングのお作法をおさえておきましょう。

OpenAI の GPT シリーズのAPIにアクセスするための、シンプルなサンプルコードは以下のようになります。生成結果をストリーミングで逐次受信してみましょう。

サンプルコード:クイックスタート

import asyncio
import os
import traceback

from openai import AsyncOpenAI


async def main() -> None:
    try:
        # モデル名を指定
        # model="gpt-4-turbo" # $10.00/MTok for input ,$30.00/MTok for output
        # model="gpt-4o" # $5.00/MTok for input ,$15.00/MTok for output
        model = "gpt-3.5-turbo-0125"  #

        # 環境変数からAPIキーを取得
        api_key = "your api key"
        
        client = AsyncOpenAI(
            api_key=api_key
        )

        stream = await client.chat.completions.create(
            model=model,
            stream=True,
            messages=[
                {"role": "system", "content": "あなたは誠実な日本語アシスタントです"},
                {"role": "user", "content": "こんにちは"}
            ],
            stream_options={"include_usage": True},  # usage(in,outのトークン数) を出力
        )

        async for chunk in stream:
            print(f"chunk__{chunk}")
    except Exception as e:
        print(f"予期せぬエラーが発生しました: {e}\n{traceback.format_exc()}")
    finally:
        pass


asyncio.run(main())

出力例

ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='こんにちは', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='何', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='か', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='お', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='手', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='伝', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='い', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='で', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='き', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='ます', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='か', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='?', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content=None, function_call=None, role=None, tool_calls=None), finish_reason='stop', index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=CompletionUsage(completion_tokens=14, prompt_tokens=31, total_tokens=45))

サンプルコード:ストリーミングされたチャンク内容をパースする

chunkをパースして、中身の各種データを取得してみましょう

import asyncio
import traceback

from openai import AsyncOpenAI


async def main() -> None:
    try:
        model = "gpt-3.5-turbo-0125"
        api_key = "your api key"
        client = AsyncOpenAI(api_key=api_key)

        stream = await client.chat.completions.create(
            model=model,
            stream=True,
            messages=[
                {"role": "system", "content": "あなたは誠実な日本語アシスタントです"},
                {"role": "user", "content": "こんにちは"}
            ],
            stream_options={"include_usage": True},  # usage を出力する
        )

        first_chunk = None
        last_chunk = None
        finish_reason = None
        full_content = ""
        role = None
        created = None
        model = None
        completion_id = None

        async for chunk in stream:

            object_type = chunk.object

            if object_type == "chat.completion.chunk":

                if first_chunk is None:
                    # 初回チャンクのとき
                    first_chunk = chunk

                    model = first_chunk.model
                    created = first_chunk.created
                    completion_id = first_chunk.id

                    if chunk.choices:
                        first_choice = chunk.choices[0]
                        role = first_choice.delta.role

                    # 初回チャンクで取得できる情報
                    print(f"completion_id: {completion_id}")
                    print(f"created: {created}")

                    # 初回チャンクのみで取得できる情報
                    print(f"model: {model}")
                    print(f"role: {role}")

                    print("streaming text:", end="", flush=True)

                last_chunk = chunk

                if chunk.choices:
                    first_choice = chunk.choices[0]

                    if first_choice.delta.content:
                        # 今イテレーションで生成されたテキスト
                        delta_str = first_choice.delta.content

                        print(delta_str, end="", flush=True)  # 生成されたテキストを逐次出力する

                        full_content += delta_str  # 全体テキストに追記

                    if finish_reason is None:
                        finish_reason = first_choice.finish_reason

        print()

        if last_chunk:
            # 最終チャンクのデータを処理

            usage = last_chunk.usage

            print(f"Full Content: {full_content}")
            print(f"Finish Reason: {finish_reason}")

            if usage:
                print(f"ttl tokens: {usage.total_tokens}")
                print(f"num input tokens:: {usage.prompt_tokens}")
                print(f"num output tokens: {usage.completion_tokens}")
            else:
                print("Usage information not available")

    except Exception as e:
        print(f"予期せぬエラーが発生しました: {e}\n{traceback.format_exc()}")
    finally:
        pass


asyncio.run(main())

実行結果

completion_id: chatcmpl-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
created: 123456789
model: gpt-3.5-turbo-0125
role: assistant
streaming text:こんにちは!どのようにお手伝いしましょうか?
Full Content: こんにちは!どのようにお手伝いしましょうか?
Finish Reason: stop
ttl tokens: 51
num input tokens:: 31
num output tokens: 20

Read more

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部
サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

こんにちは! Qualitegコンサルティングです! 前回の第1回では、サブスクリプションビジネスの基本構造と、LTV・ユニットエコノミクスという革命的な考え方を解説しました。「LTV > 3 × CAC」という黄金律、覚えていますか? サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイドなぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。

By Qualiteg コンサルティング
Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部