【GPT4o対応】OpenAI API のPythonサンプルコードと出力例

【GPT4o対応】OpenAI API のPythonサンプルコードと出力例
Photo by Fotis Fotopoulos / Unsplash

今回は、OpenAI の API 利用サンプルコードをご紹介します。

OpenAI API は OpenAI純正のAPI のみならず、vLLMなど他の推論エンジンでも OpenAI 準拠のAPIサーバーが公開されており、LLMサービングAPIのデファクトとなりつつありますので、コーディングのお作法をおさえておきましょう。

OpenAI の GPT シリーズのAPIにアクセスするための、シンプルなサンプルコードは以下のようになります。生成結果をストリーミングで逐次受信してみましょう。

サンプルコード:クイックスタート

import asyncio
import os
import traceback

from openai import AsyncOpenAI


async def main() -> None:
    try:
        # モデル名を指定
        # model="gpt-4-turbo" # $10.00/MTok for input ,$30.00/MTok for output
        # model="gpt-4o" # $5.00/MTok for input ,$15.00/MTok for output
        model = "gpt-3.5-turbo-0125"  #

        # 環境変数からAPIキーを取得
        api_key = "your api key"
        
        client = AsyncOpenAI(
            api_key=api_key
        )

        stream = await client.chat.completions.create(
            model=model,
            stream=True,
            messages=[
                {"role": "system", "content": "あなたは誠実な日本語アシスタントです"},
                {"role": "user", "content": "こんにちは"}
            ],
            stream_options={"include_usage": True},  # usage(in,outのトークン数) を出力
        )

        async for chunk in stream:
            print(f"chunk__{chunk}")
    except Exception as e:
        print(f"予期せぬエラーが発生しました: {e}\n{traceback.format_exc()}")
    finally:
        pass


asyncio.run(main())

出力例

ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='こんにちは', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='何', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='か', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='お', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='手', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='伝', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='い', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='で', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='き', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='ます', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='か', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='?', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content=None, function_call=None, role=None, tool_calls=None), finish_reason='stop', index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=CompletionUsage(completion_tokens=14, prompt_tokens=31, total_tokens=45))

サンプルコード:ストリーミングされたチャンク内容をパースする

chunkをパースして、中身の各種データを取得してみましょう

import asyncio
import traceback

from openai import AsyncOpenAI


async def main() -> None:
    try:
        model = "gpt-3.5-turbo-0125"
        api_key = "your api key"
        client = AsyncOpenAI(api_key=api_key)

        stream = await client.chat.completions.create(
            model=model,
            stream=True,
            messages=[
                {"role": "system", "content": "あなたは誠実な日本語アシスタントです"},
                {"role": "user", "content": "こんにちは"}
            ],
            stream_options={"include_usage": True},  # usage を出力する
        )

        first_chunk = None
        last_chunk = None
        finish_reason = None
        full_content = ""
        role = None
        created = None
        model = None
        completion_id = None

        async for chunk in stream:

            object_type = chunk.object

            if object_type == "chat.completion.chunk":

                if first_chunk is None:
                    # 初回チャンクのとき
                    first_chunk = chunk

                    model = first_chunk.model
                    created = first_chunk.created
                    completion_id = first_chunk.id

                    if chunk.choices:
                        first_choice = chunk.choices[0]
                        role = first_choice.delta.role

                    # 初回チャンクで取得できる情報
                    print(f"completion_id: {completion_id}")
                    print(f"created: {created}")

                    # 初回チャンクのみで取得できる情報
                    print(f"model: {model}")
                    print(f"role: {role}")

                    print("streaming text:", end="", flush=True)

                last_chunk = chunk

                if chunk.choices:
                    first_choice = chunk.choices[0]

                    if first_choice.delta.content:
                        # 今イテレーションで生成されたテキスト
                        delta_str = first_choice.delta.content

                        print(delta_str, end="", flush=True)  # 生成されたテキストを逐次出力する

                        full_content += delta_str  # 全体テキストに追記

                    if finish_reason is None:
                        finish_reason = first_choice.finish_reason

        print()

        if last_chunk:
            # 最終チャンクのデータを処理

            usage = last_chunk.usage

            print(f"Full Content: {full_content}")
            print(f"Finish Reason: {finish_reason}")

            if usage:
                print(f"ttl tokens: {usage.total_tokens}")
                print(f"num input tokens:: {usage.prompt_tokens}")
                print(f"num output tokens: {usage.completion_tokens}")
            else:
                print("Usage information not available")

    except Exception as e:
        print(f"予期せぬエラーが発生しました: {e}\n{traceback.format_exc()}")
    finally:
        pass


asyncio.run(main())

実行結果

completion_id: chatcmpl-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
created: 123456789
model: gpt-3.5-turbo-0125
role: assistant
streaming text:こんにちは!どのようにお手伝いしましょうか?
Full Content: こんにちは!どのようにお手伝いしましょうか?
Finish Reason: stop
ttl tokens: 51
num input tokens:: 31
num output tokens: 20

Read more

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部
サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング
ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース