【GPT4o対応】OpenAI API のPythonサンプルコードと出力例

【GPT4o対応】OpenAI API のPythonサンプルコードと出力例
Photo by Fotis Fotopoulos / Unsplash

今回は、OpenAI の API 利用サンプルコードをご紹介します。

OpenAI API は OpenAI純正のAPI のみならず、vLLMなど他の推論エンジンでも OpenAI 準拠のAPIサーバーが公開されており、LLMサービングAPIのデファクトとなりつつありますので、コーディングのお作法をおさえておきましょう。

OpenAI の GPT シリーズのAPIにアクセスするための、シンプルなサンプルコードは以下のようになります。生成結果をストリーミングで逐次受信してみましょう。

サンプルコード:クイックスタート

import asyncio
import os
import traceback

from openai import AsyncOpenAI


async def main() -> None:
    try:
        # モデル名を指定
        # model="gpt-4-turbo" # $10.00/MTok for input ,$30.00/MTok for output
        # model="gpt-4o" # $5.00/MTok for input ,$15.00/MTok for output
        model = "gpt-3.5-turbo-0125"  #

        # 環境変数からAPIキーを取得
        api_key = "your api key"
        
        client = AsyncOpenAI(
            api_key=api_key
        )

        stream = await client.chat.completions.create(
            model=model,
            stream=True,
            messages=[
                {"role": "system", "content": "あなたは誠実な日本語アシスタントです"},
                {"role": "user", "content": "こんにちは"}
            ],
            stream_options={"include_usage": True},  # usage(in,outのトークン数) を出力
        )

        async for chunk in stream:
            print(f"chunk__{chunk}")
    except Exception as e:
        print(f"予期せぬエラーが発生しました: {e}\n{traceback.format_exc()}")
    finally:
        pass


asyncio.run(main())

出力例

ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='こんにちは', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='何', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='か', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='お', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='手', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='伝', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='い', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='で', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='き', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='ます', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='か', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content='?', function_call=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[Choice(delta=ChoiceDelta(content=None, function_call=None, role=None, tool_calls=None), finish_reason='stop', index=0, logprobs=None)], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=None)
ChatCompletionChunk(id='chatcmpl-9iGtdyZ43HFebZV22QOaZPIzgeStA', choices=[], created=1234567890, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint=None, usage=CompletionUsage(completion_tokens=14, prompt_tokens=31, total_tokens=45))

サンプルコード:ストリーミングされたチャンク内容をパースする

chunkをパースして、中身の各種データを取得してみましょう

import asyncio
import traceback

from openai import AsyncOpenAI


async def main() -> None:
    try:
        model = "gpt-3.5-turbo-0125"
        api_key = "your api key"
        client = AsyncOpenAI(api_key=api_key)

        stream = await client.chat.completions.create(
            model=model,
            stream=True,
            messages=[
                {"role": "system", "content": "あなたは誠実な日本語アシスタントです"},
                {"role": "user", "content": "こんにちは"}
            ],
            stream_options={"include_usage": True},  # usage を出力する
        )

        first_chunk = None
        last_chunk = None
        finish_reason = None
        full_content = ""
        role = None
        created = None
        model = None
        completion_id = None

        async for chunk in stream:

            object_type = chunk.object

            if object_type == "chat.completion.chunk":

                if first_chunk is None:
                    # 初回チャンクのとき
                    first_chunk = chunk

                    model = first_chunk.model
                    created = first_chunk.created
                    completion_id = first_chunk.id

                    if chunk.choices:
                        first_choice = chunk.choices[0]
                        role = first_choice.delta.role

                    # 初回チャンクで取得できる情報
                    print(f"completion_id: {completion_id}")
                    print(f"created: {created}")

                    # 初回チャンクのみで取得できる情報
                    print(f"model: {model}")
                    print(f"role: {role}")

                    print("streaming text:", end="", flush=True)

                last_chunk = chunk

                if chunk.choices:
                    first_choice = chunk.choices[0]

                    if first_choice.delta.content:
                        # 今イテレーションで生成されたテキスト
                        delta_str = first_choice.delta.content

                        print(delta_str, end="", flush=True)  # 生成されたテキストを逐次出力する

                        full_content += delta_str  # 全体テキストに追記

                    if finish_reason is None:
                        finish_reason = first_choice.finish_reason

        print()

        if last_chunk:
            # 最終チャンクのデータを処理

            usage = last_chunk.usage

            print(f"Full Content: {full_content}")
            print(f"Finish Reason: {finish_reason}")

            if usage:
                print(f"ttl tokens: {usage.total_tokens}")
                print(f"num input tokens:: {usage.prompt_tokens}")
                print(f"num output tokens: {usage.completion_tokens}")
            else:
                print("Usage information not available")

    except Exception as e:
        print(f"予期せぬエラーが発生しました: {e}\n{traceback.format_exc()}")
    finally:
        pass


asyncio.run(main())

実行結果

completion_id: chatcmpl-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
created: 123456789
model: gpt-3.5-turbo-0125
role: assistant
streaming text:こんにちは!どのようにお手伝いしましょうか?
Full Content: こんにちは!どのようにお手伝いしましょうか?
Finish Reason: stop
ttl tokens: 51
num input tokens:: 31
num output tokens: 20

Read more

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部
Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

こんにちは! きょうは話題のMCPについて解説いたします! はじめに 「AIが便利なのはわかるけど、自分のデータにアクセスさせたり、他のアプリと連携させたりするのは難しそう...」 このような悩みを持っている方は多いのではないでしょうか。 実際、従来のAIには大きな壁がありました。トレーニングデータの範囲でしか回答できない、リアルタイム情報にアクセスできない、外部アプリケーションを操作できないなどの制約です。 トレーニングデータの外側にあるデータをうまく検索する技術としてLLM黎明期からRAGとよばれる技術が発展してきました。 データ検索だけではなく、あらゆる分野でAIが半ば自動で連携してくれる技術が登場しました。 それが「Model Context Protocol(MCP)」です。 本記事では、AIと外部ツールの連携を革新的に簡単にするMCPについて、基本から実用まで詳しく解説します。 MCPの本質:AIのための標準インターフェース MCPは、AIモデルと外部ツール・アプリケーションの間の通信を標準化するプロトコルです。これはインターネットの世界でいえば、

By Qualiteg プロダクト開発部
GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部