[ChatStream] ChatPrompt の実装

[ChatStream] ChatPrompt の実装

ChatPrompt とは

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatPrompt の具体的な実装方法をご紹介いたします!

ChatPrompt とは、事前学習済言語モデル(以降、モデル)用のプロンプトを生成するためのクラスです。プロンプトクラスと呼びます。

たとえば、 redpajama-incite の場合は以下のようなプロンプトをつくり、モデルに入力します。

<human>: Who is Alan Turing
<bot>:

すると、モデルは続きの文章を生成し、以下を出力します。

<human>: Who is Alan Turing
<bot>: He was a very honorable man.

この例では <human><bot> の後に : が続き、\n で区切られています。

こうしたルール、お作法はモデルごとに微妙に異なっています。

このプロンプトの生成や会話履歴の保持を行うクラスが ChatPrompt で、 プロンプトクラス と呼びます。

前述の通り、モデルごとにお作法が違うので、モデルごとの プロンプトクラス が必要になります。

プリセット プロンプトクラス

ChatStream では、いくつかの有名なモデルについてはプロンプトクラス = ChatPromptクラス を準備しています。

プロンプトクラスの自作

新しいモデルなど、まだプロンプトクラスが無い場合は自作することができます。

ChatPrompt プロンプトクラスの実装

プロンプトクラスの役割は以下のとおりです

  • 1. ユーザーの入力や、これまでの会話履歴をもとにモデル用のプロンプトを出力する
  • 2. 文章を適切に生成するため、
    • 2-1. 文章生成を停止する特殊トークンを情報を持つ
    • 2-2. 特定のトークンの変換情報を持つ

プロンプトはモデルごとにお作法が異なるので、そのお作法の違いを実装します

といっても、基本は文章の連結ルールを定義するだけなので難しくありません

プロンプトクラスの基底クラスのインポート

プロンプトクラスのもととなる、 AbstractChatPrompt クラスをインポートします

from chatstream import AbstractChatPrompt

基底クラスのオーバーライド

AbstractChatPrompt クラスは抽象クラスなので、必要なメソッドをオーバーライドしていきます

以下は rinna/japanese-gpt-neox-3.6b-instruction-sft 用のプロンプトクラスの実装例です

このモデルでは、以下のようなプロンプトのフォーマットを出力することが目的です

ユーザー: 日本のおすすめの観光地を教えてください。<NL>システム: どの地域の観光地が知りたいですか?<NL>ユーザー: 渋谷の観光地を教えてください。<NL>システム: 

実装は以下のようになります

from chatstream import AbstractChatPrompt


class ChatPromptRinnaJapaneseGPTNeoxInst(AbstractChatPrompt):
    def __init__(self):
        super().__init__()
        self.set_requester("ユーザー")  # モデルに対して要求する側のロール名 を指定します
        self.set_responder("システム")  # 返信する側=モデル のロール名 を指定します

    def get_stop_strs(self):
        return []  # あるキーワードが来たら文章生成を停止したい場合はここにキーワードを列挙します

    def get_replacement_when_input(self):
        return [("\n", "<NL>")]  # 入力時の入力テキストの置換ルール

    def get_replacement_when_output(self):
        return [("<NL>", "\n")]  # 出力時の出力テキストの置換ルール

    def create_prompt(self, opts={}):
        # プロンプトを構築していきます
        ret = self.system;
        # get_contents でこれまでの会話履歴リストを取得
        for chat_content in self.get_contents(opts):
            # ロール名を取得
            chat_content_role = chat_content.get_role()
            # メッセージを取得
            chat_content_message = chat_content.get_message()

            if chat_content_role:

                if chat_content_message:
                    # メッセージパートが存在する場合
                    merged_message = chat_content_role + ": " + chat_content_message + "<NL>"
                else:
                    merged_message = chat_content_role + ": "

                ret += merged_message

        return ret

    def build_initial_prompt(self, chat_prompt):
        # 初期プロンプトは実装しない
        pass

プロンプトクラスの実装:ロールの設定

  • コンストラクタで、基底クラスの __init__() を呼び出します
  • 2者間チャットの場合は、 set_requesterset_responder でロール名を指定します。
def __init__(self):
    super().__init__()
    self.set_requester("ユーザー")  # モデルに対して要求する側のロール名 を指定します
    self.set_responder("システム")  # 返信する側=モデル のロール名 を指定します

もしシステム全体の初期化メッセージが必要な場合は set_system メソッドでシステムメッセージをセットします

def __init__(self):
    super().__init__()
    self.set_system("ユーザーとシステムからなるチャットシステムです。システムはユーザーに対して丁寧かつ正確な回答をするよう心がけます")
    self.set_requester("ユーザー")  # モデルに対して要求する側のロール名 を指定します
    self.set_responder("システム")  # 返信する側=モデル のロール名 を指定します

プロンプトクラスの実装:停止文字列の設定

  • 停止文字列を指定すると、特定のキーワード、トークンが出現した場合に文章生成を停止させることができます。
  • 無指定の場合は return [] とします
  • 停止文字列 と EOSトークン は異なります。ここで停止文字列を無指定にしても
    tokenizer にあらかじめ設定されている EOSトークン (tokenizer.eos_token_id)でも文章生成は停止します。
    def get_stop_strs(self):


    return ['</s>']  # '</s>' が出現したら、そこで文章生成を停止する

プロンプトクラスの実装:入力テキストの置換ルールの設定

チャットの実装では基本的にユーザーが入力した文章をモデルに入力しますが、モデルに入力できない文字やモデルに入力する際に変換が必要になる場合があります。

たとえば、ユーザーが入力した文章に \n (改行) が含まれているが、モデルが \n を受け付けられない場合は \n を適切な文字列に置換する必要があります。

ユーザーの入力をモデルに入力するときに置換するには以下のように指定します

    def get_replacement_when_input(self):


    return [("\n", "<NL>")]  # 入力時の入力テキストの置換ルール

ここでは \n<NL> に置換するように指定しています。("\n", "<NL>") のように組み合わせをタプルで指定します。
複数の置換パターンを登録したいときはこのタプルを複数指定します。

プロンプトクラスの実装:出力テキストの置換ルールの設定

モデルが出力した文章内に登場するキーワードを置換することができます。

例えば、モデルの出力が おはようございます。<NL>何か御用でしょうか だった場合に <NL> を 改行を示す \n に置換したいときに以下のように設定することで
出力を置換することができます

   def get_replacement_when_output(self):


   return [("<NL>", "\n")]  # 出力時の出力テキストの置換ルール

プロンプトクラスの実装:プロンプトの生成

過去の会話履歴を含めたプロンプト全体を生成するのが create_prompt メソッドです。

過去の会話履歴は self.get_contents() で取得することができます。

get_contents の戻り値は リストで、値には ChatContent クラスのインスタンスが格納されます

ChatContent クラスは1件分のチャット内容が格納されておりchat_content.getRole() でロール名、 chat_content.get_message()
でそのロールの発話内容(テキスト)が取得できます。

これらをつなぎあわせるロジックを記述することで、モデルが期待するフォーマットのプロンプトを生成することができます

    def create_prompt(self, opts={}):


# プロンプトを構築していきます
ret = self.system;
# get_contents でこれまでの会話履歴リストを取得
for chat_content in self.get_contents(opts):
    # ロール名を取得
    chat_content_role = chat_content.get_role()
    # メッセージを取得
    chat_content_message = chat_content.get_message()

    if chat_content_role:

        if chat_content_message:
            # メッセージパートが存在する場合
            merged_message = chat_content_role + ": " + chat_content_message + "<NL>"
        else:
            merged_message = chat_content_role + ": "

        ret += merged_message

return ret

プロンプトクラスの実装:初期プロンプト、初期コンテクストの生成

モデルによっては、事前に、ある程度会話のコンテクストを設定しておきたい場合があります。

いきなりモデルに入力して文章させることを ゼロショット と呼びますが、
事前にいくらか入力しておいて、前提知識や、例示などをあたえると、その後の出力が安定する場合があります。

これを ワンショットやフューショット などと呼びます。

チャットの場合はある特定の話題から会話を開始する、などの用途でも用います

以下は初期コンテクストとして、映画「タイタニック」と会話している状態からチャットを開始するための例です

build_initial_promptメソッドをオーバーライドします

def build_initial_prompt(self, chat_prompt):
    chat_prompt.add_requester_msg("Do you know about the Titanic movie?")
    chat_prompt.add_responder_msg("Yes, I am familiar with it.")
    chat_prompt.add_requester_msg("Who starred in the movie?")
    chat_prompt.add_responder_msg("Leonardo DiCaprio and Kate Winslet.")

Read more

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部