[ChatStream] ChatPrompt の実装

[ChatStream] ChatPrompt の実装

ChatPrompt とは

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatPrompt の具体的な実装方法をご紹介いたします!

ChatPrompt とは、事前学習済言語モデル(以降、モデル)用のプロンプトを生成するためのクラスです。プロンプトクラスと呼びます。

たとえば、 redpajama-incite の場合は以下のようなプロンプトをつくり、モデルに入力します。

<human>: Who is Alan Turing
<bot>:

すると、モデルは続きの文章を生成し、以下を出力します。

<human>: Who is Alan Turing
<bot>: He was a very honorable man.

この例では <human><bot> の後に : が続き、\n で区切られています。

こうしたルール、お作法はモデルごとに微妙に異なっています。

このプロンプトの生成や会話履歴の保持を行うクラスが ChatPrompt で、 プロンプトクラス と呼びます。

前述の通り、モデルごとにお作法が違うので、モデルごとの プロンプトクラス が必要になります。

プリセット プロンプトクラス

ChatStream では、いくつかの有名なモデルについてはプロンプトクラス = ChatPromptクラス を準備しています。

プロンプトクラスの自作

新しいモデルなど、まだプロンプトクラスが無い場合は自作することができます。

ChatPrompt プロンプトクラスの実装

プロンプトクラスの役割は以下のとおりです

  • 1. ユーザーの入力や、これまでの会話履歴をもとにモデル用のプロンプトを出力する
  • 2. 文章を適切に生成するため、
    • 2-1. 文章生成を停止する特殊トークンを情報を持つ
    • 2-2. 特定のトークンの変換情報を持つ

プロンプトはモデルごとにお作法が異なるので、そのお作法の違いを実装します

といっても、基本は文章の連結ルールを定義するだけなので難しくありません

プロンプトクラスの基底クラスのインポート

プロンプトクラスのもととなる、 AbstractChatPrompt クラスをインポートします

from chatstream import AbstractChatPrompt

基底クラスのオーバーライド

AbstractChatPrompt クラスは抽象クラスなので、必要なメソッドをオーバーライドしていきます

以下は rinna/japanese-gpt-neox-3.6b-instruction-sft 用のプロンプトクラスの実装例です

このモデルでは、以下のようなプロンプトのフォーマットを出力することが目的です

ユーザー: 日本のおすすめの観光地を教えてください。<NL>システム: どの地域の観光地が知りたいですか?<NL>ユーザー: 渋谷の観光地を教えてください。<NL>システム: 

実装は以下のようになります

from chatstream import AbstractChatPrompt


class ChatPromptRinnaJapaneseGPTNeoxInst(AbstractChatPrompt):
    def __init__(self):
        super().__init__()
        self.set_requester("ユーザー")  # モデルに対して要求する側のロール名 を指定します
        self.set_responder("システム")  # 返信する側=モデル のロール名 を指定します

    def get_stop_strs(self):
        return []  # あるキーワードが来たら文章生成を停止したい場合はここにキーワードを列挙します

    def get_replacement_when_input(self):
        return [("\n", "<NL>")]  # 入力時の入力テキストの置換ルール

    def get_replacement_when_output(self):
        return [("<NL>", "\n")]  # 出力時の出力テキストの置換ルール

    def create_prompt(self, opts={}):
        # プロンプトを構築していきます
        ret = self.system;
        # get_contents でこれまでの会話履歴リストを取得
        for chat_content in self.get_contents(opts):
            # ロール名を取得
            chat_content_role = chat_content.get_role()
            # メッセージを取得
            chat_content_message = chat_content.get_message()

            if chat_content_role:

                if chat_content_message:
                    # メッセージパートが存在する場合
                    merged_message = chat_content_role + ": " + chat_content_message + "<NL>"
                else:
                    merged_message = chat_content_role + ": "

                ret += merged_message

        return ret

    def build_initial_prompt(self, chat_prompt):
        # 初期プロンプトは実装しない
        pass

プロンプトクラスの実装:ロールの設定

  • コンストラクタで、基底クラスの __init__() を呼び出します
  • 2者間チャットの場合は、 set_requesterset_responder でロール名を指定します。
def __init__(self):
    super().__init__()
    self.set_requester("ユーザー")  # モデルに対して要求する側のロール名 を指定します
    self.set_responder("システム")  # 返信する側=モデル のロール名 を指定します

もしシステム全体の初期化メッセージが必要な場合は set_system メソッドでシステムメッセージをセットします

def __init__(self):
    super().__init__()
    self.set_system("ユーザーとシステムからなるチャットシステムです。システムはユーザーに対して丁寧かつ正確な回答をするよう心がけます")
    self.set_requester("ユーザー")  # モデルに対して要求する側のロール名 を指定します
    self.set_responder("システム")  # 返信する側=モデル のロール名 を指定します

プロンプトクラスの実装:停止文字列の設定

  • 停止文字列を指定すると、特定のキーワード、トークンが出現した場合に文章生成を停止させることができます。
  • 無指定の場合は return [] とします
  • 停止文字列 と EOSトークン は異なります。ここで停止文字列を無指定にしても
    tokenizer にあらかじめ設定されている EOSトークン (tokenizer.eos_token_id)でも文章生成は停止します。
    def get_stop_strs(self):


    return ['</s>']  # '</s>' が出現したら、そこで文章生成を停止する

プロンプトクラスの実装:入力テキストの置換ルールの設定

チャットの実装では基本的にユーザーが入力した文章をモデルに入力しますが、モデルに入力できない文字やモデルに入力する際に変換が必要になる場合があります。

たとえば、ユーザーが入力した文章に \n (改行) が含まれているが、モデルが \n を受け付けられない場合は \n を適切な文字列に置換する必要があります。

ユーザーの入力をモデルに入力するときに置換するには以下のように指定します

    def get_replacement_when_input(self):


    return [("\n", "<NL>")]  # 入力時の入力テキストの置換ルール

ここでは \n<NL> に置換するように指定しています。("\n", "<NL>") のように組み合わせをタプルで指定します。
複数の置換パターンを登録したいときはこのタプルを複数指定します。

プロンプトクラスの実装:出力テキストの置換ルールの設定

モデルが出力した文章内に登場するキーワードを置換することができます。

例えば、モデルの出力が おはようございます。<NL>何か御用でしょうか だった場合に <NL> を 改行を示す \n に置換したいときに以下のように設定することで
出力を置換することができます

   def get_replacement_when_output(self):


   return [("<NL>", "\n")]  # 出力時の出力テキストの置換ルール

プロンプトクラスの実装:プロンプトの生成

過去の会話履歴を含めたプロンプト全体を生成するのが create_prompt メソッドです。

過去の会話履歴は self.get_contents() で取得することができます。

get_contents の戻り値は リストで、値には ChatContent クラスのインスタンスが格納されます

ChatContent クラスは1件分のチャット内容が格納されておりchat_content.getRole() でロール名、 chat_content.get_message()
でそのロールの発話内容(テキスト)が取得できます。

これらをつなぎあわせるロジックを記述することで、モデルが期待するフォーマットのプロンプトを生成することができます

    def create_prompt(self, opts={}):


# プロンプトを構築していきます
ret = self.system;
# get_contents でこれまでの会話履歴リストを取得
for chat_content in self.get_contents(opts):
    # ロール名を取得
    chat_content_role = chat_content.get_role()
    # メッセージを取得
    chat_content_message = chat_content.get_message()

    if chat_content_role:

        if chat_content_message:
            # メッセージパートが存在する場合
            merged_message = chat_content_role + ": " + chat_content_message + "<NL>"
        else:
            merged_message = chat_content_role + ": "

        ret += merged_message

return ret

プロンプトクラスの実装:初期プロンプト、初期コンテクストの生成

モデルによっては、事前に、ある程度会話のコンテクストを設定しておきたい場合があります。

いきなりモデルに入力して文章させることを ゼロショット と呼びますが、
事前にいくらか入力しておいて、前提知識や、例示などをあたえると、その後の出力が安定する場合があります。

これを ワンショットやフューショット などと呼びます。

チャットの場合はある特定の話題から会話を開始する、などの用途でも用います

以下は初期コンテクストとして、映画「タイタニック」と会話している状態からチャットを開始するための例です

build_initial_promptメソッドをオーバーライドします

def build_initial_prompt(self, chat_prompt):
    chat_prompt.add_requester_msg("Do you know about the Titanic movie?")
    chat_prompt.add_responder_msg("Yes, I am familiar with it.")
    chat_prompt.add_requester_msg("Who starred in the movie?")
    chat_prompt.add_responder_msg("Leonardo DiCaprio and Kate Winslet.")

Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部