PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは!

今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。

みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。

本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。

モデルチェックポイントの隠れた危険性

PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。

その理由は、

  • チェックポイント単なるパラメータだけではないよ!
    チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。
  • 実行可能なコードが入ってるよ!
    これは、チェックポイントが単なる「データファイル」ではなく、Pythonコードを実行できる可能性を持つファイルであることを意味します。
  • ってことで潜在的な脆弱性があるよ!
    悪意あるチェックポイントを不用意にロードすると、ファイルをロードした瞬間に任意のコードが実行される可能性があります。

そうです、チェックポイントは重みデータだけではないんです。

チェックポイントファイルに入れられるもの

ということで、PyTorchのチェックポイントファイル(.ptや.pth,.ckptファイル)には、モデルの重み(パラメータ)だけでなく、実際にPythonのコードも含めることができてしまいます。

これは、PyTorchが内部的にPythonのpickleシリアライゼーション形式を使用しているためです。

pickleは、Pythonオブジェクトの状態を保存・復元するための仕組みですが、クラス定義や関数など、実行可能なコードも含めて保存できる特性があります。

具体的には、チェックポイントには以下のような要素が含まれてる可能性があります。

  • モデルの重みパラメータ
  • モデルのアーキテクチャ情報
  • オプティマイザの状態
  • 学習率スケジューラの状態
  • カスタムクラス・関数の定義(←ここが危ない)
  • その他のメタデータ

「カスタムクラス・関数の定義」が、セキュリティ上の懸念となります。悪意のある人が作成したチェックポイントには、ファイル削除やシステムコマンドの実行など、危険なコードが含まれている可能性があります。

だから、魅力的なチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイんです。

具体的な攻撃シナリオ

悪意あるチェックポイントが引き起こす可能性のある問題は次のようなものがあります

  1. (あなたが)不正なファイルをダウンロードする
  2. (あなたが)それをweights_only=Falseでロードする
  3. (わるい奴が仕込んだ)チェックポイントに含まれた悪意あるコードが即座に実行される
  4. (最悪の場合は)攻撃者はPC上で任意の操作(ファイル削除、情報漏洩、マルウェアのインストールなど)が可能になる

PyTorch 2.6でのセキュリティ強化

PyTorch 2.6以降では、セキュリティ対策が強化されました。具体的な変更点としては、

  • torch.load()weights_only引数がデフォルトでTrueに設定されるようになりました
  • これにより、デフォルトでモデルのパラメータ(重み)のみが安全にロードされ、潜在的に危険なコードの実行が防止されます

この変更により、以下のようなエラーが発生したり

RuntimeError: ('Attempted to deserialize object from torch.nn.Module that contains non-parameter/buffer types, which could potentially lead to security vulnerabilities. ...

 _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
         (1) In PyTorch 2.6, we changed the default value of the weights_only argument in torch.load from False to True. Re-running torch.load with weights_only set to False will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
         (2) Alternatively, to load with weights_only=True please check the recommended steps in the following error message.
         WeightsUnpickler error: Unsupported global:...

このエラーは、チェックポイントファイルに単なるモデルの重みだけでなく、クラスや関数などのコード情報も含まれている場合に発生します。例えば、fairseq.data.dictionary.Dictionaryのようなクラスが含まれていると、デフォルト設定では未許可のクラスとして拒否されます。

安全の基準:何が「安全」で何が「安全でない」か

🟢 「安全」と判断できるファイル

次のような場合はほぼ「安全」と考えることができます

  • 自分自身で作成したモデルのチェックポイント(内容を完全に把握しているため)
  • 信頼できる公式ソースから直接取得したモデルファイル(有名な大学、著名な企業、公式レポジトリなど)
  • 公式のGitHubリポジトリや公式ウェブサイトから取得したモデルで、提供者が広く知られており、モデルのチェックポイントの内容が明示的に示されている場合(例:Hugging Faceの公式リポジトリ、Facebookのfairseq公式リポジトリなど)

(とはいえ、注意深くセキュリティ情報は把握しておく必要はありますし、基本は weights_only =True でロードです。)

🔴 「安全でない」可能性のあるファイル

次のような場合は「安全でない」と疑うべきです:

  • 出所不明のサイトや第三者が匿名で共有したモデル
  • SNSや非公式フォーラムなど、素性がわからない人物から直接ダウンロードしたモデルファイル
  • モデルファイルの配布者が特定できず、かつモデルの構造やコードについて十分な情報が公開されていない場合

このようなファイルは絶対にweights_only=Falseでロードしてはいけません。

🔐 安全なモデルロードのためのコード例と対処法

エラーが発生した場合の解決方法

ここではfacebookの fairseqを使っていて実際に発生したエラーと対処法についてみてみます

 _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
         (1) In PyTorch 2.6, we changed the default value of the weights_only argument in torch.load from False to True. Re-running torch.load with weights_only set to False will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
         (2) Alternatively, to load with weights_only=True please check the recommended steps in the following error message.
         WeightsUnpickler error: Unsupported global: GLOBAL fairseq.data.dictionary.Dictionary was not an allowed global by default. Please use torch.serialization.add_safe_globals([Dictionary]) or the torch.serialization.safe_globals([Dictionary]) context manager to allowlist this global if you trust this class/function.

このエラーは、PyTorchのtorch.load()でモデルのチェックポイントを読み込む際、セキュリティのためデフォルト設定が厳しくなったために発生したものです。

具体的には、以下の原因によります

  • PyTorch 2.6以降で、torch.load()weights_only引数がデフォルトでTrueとなり、モデルのパラメータ(重み)のみを安全にロードしようとします。
  • このエラーが発生するチェックポイントファイルには、単なるモデルの重みだけでなく、クラスや関数などのコード情報も含まれています。そのため、weights_only=Trueのままロードしようとすると、未許可のクラスや関数が含まれているとして拒否されます。
  • 今回のエラーの場合、未許可として拒否されたクラスは fairseq.data.dictionary.Dictionary となっていることがこのメッセージから読み取れますね。

① 推奨の解決方法(安全性高)

信頼できるクラスを「許可リスト」に登録してから読み込みます。

import torch
from fairseq.data.dictionary import Dictionary

# このクラスが安全と分かっている場合のみ実行
torch.serialization.add_safe_globals([Dictionary])

# その後にチェックポイントをロード
checkpoint = torch.load('checkpoint.pt')

もしくは、一時的に許可する場合はコンテキストマネージャを利用します。

import torch
from fairseq.data.dictionary import Dictionary

with torch.serialization.safe_globals([Dictionary]):
    checkpoint = torch.load('checkpoint.pt')

② 旧来の方法(安全性低)

weights_only=Falseを指定してロードします。ただし、この方法は安全ではないため、信頼できるソースから取得したファイルにのみ使用してください。

import torch

checkpoint = torch.load('checkpoint.pt', weights_only=False)

実装例:安全にチェックポイントをロードする関数

以下は、安全性を考慮したチェックポイントロード関数の例です

import torch
from typing import List, Type, Optional

def load_checkpoint_safely(
    checkpoint_path: str,
    trusted_classes: Optional[List[Type]] = None,
    force_weights_only: bool = False
) -> dict:
    """
    安全にチェックポイントをロードする関数
    
    Args:
        checkpoint_path: チェックポイントファイルのパス
        trusted_classes: 信頼できるクラスのリスト(None の場合は空リスト)
        force_weights_only: True の場合、weights_only=True で強制的にロード
        
    Returns:
        チェックポイントの内容
        
    Raises:
        RuntimeError: ロードに失敗した場合
    """
    if force_weights_only:
        return torch.load(checkpoint_path, weights_only=True)
        
    trusted_classes = trusted_classes or []
    
    try:
        # まず安全にロードを試みる
        return torch.load(checkpoint_path)
    except RuntimeError as e:
        if "non-parameter/buffer types" in str(e):
            # 信頼できるクラスがある場合はそれらを使用
            if trusted_classes:
                with torch.serialization.safe_globals(trusted_classes):
                    return torch.load(checkpoint_path)
            else:
                raise RuntimeError(
                    f"チェックポイントに未許可のクラスが含まれています。"
                    f"信頼できるソースの場合は、trusted_classes パラメータを使用してください。"
                    f"原エラー: {str(e)}"
                )
        else:
            # その他のエラーはそのまま再発生
            raise

さて、最後に今回の事例についてベストプラクティスをまとめておきましょう

ベストプラクティスのまとめ

  1. デフォルトは安全第一
    • PyTorch 2.6以降のデフォルト設定(weights_only=True)を活用する
    • 信頼性が不明なファイルは常にデフォルト設定のままロードを試みる
  2. 明示的な許可リストの使用
    • 信頼できるクラスはadd_safe_globalsまたはsafe_globalsコンテキストマネージャで明示的に許可する
    • これにより、必要最小限のクラスのみを許可し、安全性を確保できる
  3. weights_only=Falseは最終手段です
    • 信頼できるファイルの場合のみ、最終手段として使用する
    • 不明なソースのチェックポイントには絶対に使用しない

まとめ:セキュリティ意識の向上を

PyTorch 2.6以降のセキュリティ強化は、深層学習モデルの安全な共有と利用を前進させました。

基本的な安全の基準は非常にシンプルで

  • 出所が明確で信頼(安全のエビデンスがある)できる → 安全
  • 出所不明、匿名、不審な提供元 → 安全でない

当社でもプロダクトのベースを PyTorch 2.6 にしたら、いままで動いていたコードが動かなくなり、多くの見直しも発生しました。が、そのおかげで、モデル・セキュリティの意識と知識を一歩深めることができたと感じております。

ディープラーニングの適用例やプレイヤーが増えるにつれ多くの有用なモデルが配布されるようになりましたが、プレイヤーが増えると、このようによからぬことを考えるプレイヤーも増えるという事なので、今後もチェックポイントのロードには細心の注意を払っていきたいと思います。旧バージョンのPyTorchを使ってるプロダクト開発する必要がある場合は特にきをつけるべきですね。

それでは、また次回お会いしましょう!

Read more

ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

11月に入り、朝晩の冷え込みが本格的になってきましたね。オフィスでも暖房を入れ始めた方も多いのではないでしょうか。 温かいコーヒーを片手に、シリーズ第4回「プロキシサーバーと統合Windows認証」をお届けします。 さて、前回(第3回)は、クライアントPCやサーバーをドメインに参加させる際の「信頼関係」の確立について深掘りしました。コンピューターアカウントが120文字のパスワードで自動認証される仕組みを理解いただけたことで、今回のプロキシサーバーの話もスムーズに入っていけるはずです。 ChatGPTやClaudeへのアクセスを監視する中間プロキシを構築する際、最も重要なのが「確実なユーザー特定」です。せっかくHTTPS通信をインターセプトして入出力内容を記録できても、アクセス元が「tanaka_t」なのか「yamada_h」なのかが分からなければ、監査ログとしての価値は半減してしまいます。 今回は、プロキシサーバー自体をドメインメンバーとして動作させることで、Kerberosチケットの検証を可能にし、透過的なユーザー認証を実現する方法を詳しく解説します。Windows版Squid

By Qualiteg AIセキュリティチーム
エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部