PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート
Photo by Christian Wiediger / Unsplash

古いPyTorchコード資産を持っている会社は、昔のコードが最新のPyTorchで動かない!最新のGPUで動かない!ということに遭遇することが多いのでしょうか。
今回は、PyTorchバージョン、対応GPU Capability Level 、対応CUDAバージョンについてまとめてみます。

PyTorchがサポートするGPUの Compute Capability

PyTorch バージョン サポートされる Compute Capability (SM) レベル
1.0.0 - 1.3.1 SM_35, SM_37, SM_50, SM_60, SM_61, SM_70
1.4.0 - 1.7.1 SM_37, SM_50, SM_60, SM_61, SM_70, SM_75
1.8.0 - 1.8.1 SM_37, SM_50, SM_60, SM_70, SM_75, SM_80
1.9.0 - 1.12.1 SM_37, SM_50, SM_60, SM_70, SM_75, SM_80, SM_86
1.13.0 - 2.0.1 SM_37, SM_50, SM_60, SM_70, SM_75, SM_80, SM_86, SM_89, SM_90
2.1.0 以降 SM_50, SM_60, SM_70, SM_75, SM_80, SM_86, SM_89, SM_90

PyTorch旧バージョンインストール方法参考ページ

https://pytorch.org/get-started/previous-versions/

PyTorchがサポートするPythonバージョン

PyTorch バージョン サポートされる Python バージョン
1.4.0 - 1.7.1 3.6, 3.7, 3.8
1.8.0 - 1.9.1 3.6, 3.7, 3.8, 3.9
1.10.0 - 1.12.1 3.7, 3.8, 3.9, 3.10
1.13.0 - 2.0.1 3.8, 3.9, 3.10, 3.11
2.1.0 以降 3.8, 3.9, 3.10, 3.11, 3.12

Compute Capabilityと代表的GPUラインナップ

SM_世代 データセンター/プロ向けGPU GeForce GPU
SM_100 (Blackwell) NVIDIA B100 (GB100), B200, GB202, GB203, GB205, GB206, GB207, NVIDIA B40 GeForce RTX 5090, RTX 5080
SM_90 (Hopper) NVIDIA H100, NVIDIA H200 -
SM_89 (Ada Lovelace) NVIDIA L4, NVIDIA L40, RTX 6000 Ada Generation, L40s Ada GeForce RTX 4090, GeForce RTX 4080, GeForce RTX 4070 Ti / 4070, GeForce RTX 4060 Ti / 4060, GeForce RTX 4050
SM_86, SM_87 (Ampere) NVIDIA A100, NVIDIA A30, NVIDIA A40, RTX A2000, A3000, RTX A4000, A5000, A6000, A10, A16, A2 Tensor Core GPU, A800 40GB GeForce RTX 3090, GeForce RTX 3080, GeForce RTX 3070, GeForce RTX 3060, GeForce RTX 3050
SM_75 (Turing) Quadro RTX 8000, RTX 6000, RTX 5000, RTX 4000, T4 GeForce RTX 2080 Ti, GeForce RTX 2070, GeForce GTX 1660 Ti
SM_70, SM_72 (Volta) Tesla V100, Quadro GV100, Titan V, Xavier NX -
SM_60, SM_61, SM_62 (Pascal) Tesla P100, Quadro GP100 GeForce GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, GT 1010, Titan Xp
SM_50, SM_52, SM_53 (Maxwell) Tesla M-series, Quadro M6000 GeForce GTX 980 Ti, GTX Titan X, GTX 980, GTX 970
SM_35, SM_37 (Kepler) Tesla K40, Tesla K80 -
SM_30 (Kepler) - GeForce 700シリーズ, GT-730
SM_20 (Fermi) - GeForce 400, 500, 600, GT-630

出展: https://blog.qualiteg.com/nvidia-gpu-capability-level/

対応CUDAバージョン

SM_世代 アーキテクチャ 互換性のある最小CUDAバージョン CUDA 12.5での状態
SM_100 Blackwell - -
SM_90 Hopper CUDA 12.0以降 対応
SM_89 Ada Lovelace CUDA 11.8以降 対応
SM_86, SM_87 Ampere CUDA 11.1以降 対応
SM_80 Ampere CUDA 11.0以降 対応
SM_75 Turing CUDA 10.0以降 対応
SM_70, SM_72 Volta CUDA 9.0以降 対応
SM_60, SM_61, SM_62 Pascal CUDA 8.0以降 対応
SM_50, SM_52, SM_53 Maxwell CUDA 6.0以降 対応
SM_30, SM_35, SM_37 Kepler CUDA 5.0以降 サポート終了
SM_20 Fermi CUDA 3.2以降 サポート終了

Read more

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング