PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート
Photo by Christian Wiediger / Unsplash

古いPyTorchコード資産を持っている会社は、昔のコードが最新のPyTorchで動かない!最新のGPUで動かない!ということに遭遇することが多いのでしょうか。
今回は、PyTorchバージョン、対応GPU Capability Level 、対応CUDAバージョンについてまとめてみます。

PyTorchがサポートするGPUの Compute Capability

PyTorch バージョン サポートされる Compute Capability (SM) レベル
1.0.0 - 1.3.1 SM_35, SM_37, SM_50, SM_60, SM_61, SM_70
1.4.0 - 1.7.1 SM_37, SM_50, SM_60, SM_61, SM_70, SM_75
1.8.0 - 1.8.1 SM_37, SM_50, SM_60, SM_70, SM_75, SM_80
1.9.0 - 1.12.1 SM_37, SM_50, SM_60, SM_70, SM_75, SM_80, SM_86
1.13.0 - 2.0.1 SM_37, SM_50, SM_60, SM_70, SM_75, SM_80, SM_86, SM_89, SM_90
2.1.0 -2.60 SM_50, SM_60, SM_70, SM_75, SM_80, SM_86, SM_89, SM_90
2.8.0 -2.90 SM_50, SM_60, SM_70, SM_75, SM_80, SM_86, SM_89, SM_90, SM_100, SM_120

PyTorch旧バージョンインストール方法参考ページ

https://pytorch.org/get-started/previous-versions/

PyTorchがサポートするPythonバージョン

PyTorch バージョン サポートされる Python バージョン
1.4.0 - 1.7.1 3.6, 3.7, 3.8
1.8.0 - 1.9.1 3.6, 3.7, 3.8, 3.9
1.10.0 - 1.12.1 3.7, 3.8, 3.9, 3.10
1.13.0 - 2.0.1 3.8, 3.9, 3.10, 3.11
2.1.0 - 2.6.0 3.8, 3.9, 3.10, 3.11, 3.12
2.8.0 以降 3.9, 3.10, 3.11, 3.12

Compute Capabilityと代表的GPUラインナップ

SM_世代 データセンター/プロ向けGPU GeForce GPU
SM_120 (Blackwell) - GeForce RTX 5090, RTX 5080, RTX 5070, RTX 5060
SM_100 (Blackwell) NVIDIA B100 (GB100), B200, GB202, GB203, GB205, GB206, GB207, NVIDIA B40, RTX PRO 6000 Blackwell -
SM_90 (Hopper) NVIDIA H100, NVIDIA H200 -
SM_89 (Ada Lovelace) NVIDIA L4, NVIDIA L40, RTX 6000 Ada Generation, L40s Ada GeForce RTX 4090, GeForce RTX 4080, GeForce RTX 4070 Ti / 4070, GeForce RTX 4060 Ti / 4060, GeForce RTX 4050
SM_86, SM_87 (Ampere) NVIDIA A100, NVIDIA A30, NVIDIA A40, RTX A2000, A3000, RTX A4000, A5000, A6000, A10, A16, A2 Tensor Core GPU, A800 40GB GeForce RTX 3090, GeForce RTX 3080, GeForce RTX 3070, GeForce RTX 3060, GeForce RTX 3050
SM_75 (Turing) Quadro RTX 8000, RTX 6000, RTX 5000, RTX 4000, T4 GeForce RTX 2080 Ti, GeForce RTX 2070, GeForce GTX 1660 Ti
SM_70, SM_72 (Volta) Tesla V100, Quadro GV100, Titan V, Xavier NX -
SM_60, SM_61, SM_62 (Pascal) Tesla P100, Quadro GP100 GeForce GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, GT 1010, Titan Xp
SM_50, SM_52, SM_53 (Maxwell) Tesla M-series, Quadro M6000 GeForce GTX 980 Ti, GTX Titan X, GTX 980, GTX 970
SM_35, SM_37 (Kepler) Tesla K40, Tesla K80 -
SM_30 (Kepler) - GeForce 700シリーズ, GT-730
SM_20 (Fermi) - GeForce 400, 500, 600, GT-630

出展: https://blog.qualiteg.com/nvidia-gpu-capability-level/

対応CUDAバージョン

SM_世代 アーキテクチャ 互換性のある最小CUDAバージョン CUDA 12.6での状態
SM_120 Blackwell CUDA 13.0以降 非対応
SM_100 Blackwell - -
SM_90 Hopper CUDA 12.0以降 対応
SM_89 Ada Lovelace CUDA 11.8以降 対応
SM_86, SM_87 Ampere CUDA 11.1以降 対応
SM_80 Ampere CUDA 11.0以降 対応
SM_75 Turing CUDA 10.0以降 対応
SM_70, SM_72 Volta CUDA 9.0以降 対応
SM_60, SM_61, SM_62 Pascal CUDA 8.0以降 対応
SM_50, SM_52, SM_53 Maxwell CUDA 6.0以降 対応
SM_30, SM_35, SM_37 Kepler CUDA 5.0以降 サポート終了
SM_20 Fermi CUDA 3.2以降 サポート終了

関連ポスト

NVIDIA GPU 一覧・検索ツール
NVIDIA GPU と Capability Level

Read more

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング
【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部
Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部