[ChatStream] キューイングシステムと同時処理制限

[ChatStream] キューイングシステムと同時処理制限

こんにちは! (株)Qualiteg プロダクト開発部 です!
本稿では、 ChatStream のキューイングシステムについてご説明いたします!

キューイングシステムとは

ChatStream は多数同時アクセス要求が来たときに、
リクエストをキューイングし、同時に実行できる文章生成の数を制限することができます。

GPU や CPU の性能に応じて、文章生成処理の同時実行数を制限することで、良好な応答性能を得ることができます。

また同時実行数を超えるリクエストがあった場合はリクエストをキューイング(待ち行列に追加)し、
順次実行することで、負荷を適切にコントロールします。

同時実行とは

同時実行とは 1GPU で実行する場合には、正確には同時実行ではなく 並行実行(concurrent) となります。

同時実行数をセットすると、その数だけ 並行実行 されます。

たとえば、同時実行数の最大値が2に設定されている状態で、2人のユーザー1、ユーザー2 が同じタイミングにリクエストしてきた場合
2人のリクエストは 処理キュー (文章生成中をあらわすキュー)に入り1トークンごとに交互に文章を生成 します。
例えば日本語のモデルの場合、1トークンはほぼ1文字に相当しますので、ユーザー1向けの文章に1文字追加したらユーザー2向けの文章に1文字追加します。
これを文章生成が終わるまで繰り返します。

ユーザー3が途中で割り込んできた場合、まだユーザー1とユーザー2の文章は生成されている途中ですので、ユーザーCのリクエストは リクエストキュー (処理待ち行列) に入ります。

ユーザー1またはユーザー2の文章生成が終了すると、 リクエストキュー に入っているユーザー3のリクエストが 処理キュー に入り、
文章生成処理が開始されます。

コラム: 非同期I/O と並行実行

FastAPIは非同期I/Oをサポートしており、これは複数のリクエストを並行に処理する能力があります。
Pythonの非同期I/Oは、コルーチンと呼ばれる特殊な関数を使用して並行性を実現しています。
この場合の並行性とは、一度に一つのタスクだけが進行するが、I/O操作(HTTPリクエスト、モデルからのトークンの生成など)を待つ間に他のタスクを進行させることができる
ということです。この形式を"協調的マルチタスク"を呼びます。
それぞれのリクエストは別の「非同期タスク」として処理され、これらのタスクは同じスレッド上で切り替えられます。
「非同期タスク」においては複数のリクエストに対するモデルへのアクセスが並行しているように見えますが
実際にはある瞬間に一つのリクエストだけがモデルを利用しています
そのため、それぞれのリクエストが モデルによるトークン生成のためにブロックする期間は限られており、
逐次出力トークンの生成について言えば、1つ新トークンを生成した後で他のリクエストに制御を戻すことができます
そのため、一つのリクエストによる文章生成の際、停止トークン、停止文字列が現れるまでの間、
他の全てのリクエストがブロックされることはなく、各リクエストはモデルからのトークンを逐次生成しながら、
他のリクエストも進行させることができます

キューイングの開始

Web アプリケーションの起動時に start_queue_worker を呼ぶことで、キューワーカーを開始できます

キューワーカーを開始すると、リクエスト処理キューが開始され、リクエストをリクエストキューに挿入し、処理キューへと順次実行していくキューイングループが開始されます

chatstream#start_queue_worker


Read more

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部
企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

こんにちは! ChatGPTやClaudeといった生成AIサービスが業務に浸透し始めた今、 「AIに機密情報を送ってしまうリスク」 が新たなセキュリティ課題として浮上しています。 この課題に向き合う中で、私たちは改めて「企業のセキュリティアーキテクチャはどう変遷してきたのか」を振り返る機会がありました。 すると、ある疑問が浮かんできます。 「なんでこんなに複雑になってるんだっけ?」 企業のセキュリティ担当者なら、一度は思ったことがあるのではないでしょうか。 アルファベット3〜4文字の製品が乱立し、それぞれが微妙に重複した機能を持ち、設定は複雑化し、コストは膨らみ続けています。 当社ではAIセキュリティ関連プロダクトをご提供しておりますが、AI時代のセキュリティを考える上でも、この歴史を理解することは重要ではないかと考えました。 本記事では、企業ネットワークセキュリティの変遷を振り返りながら、「なぜこうなったのか」を整理してみたいと思います。 第1章:観測点を集約できた時代 ― オンプレAD + Proxy(〜2010年代前半) 統制しやすかったモデル かつ

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

こんにちは。 —— 2003年のSOAから、2026年のAIへ —— この記事は、過去の技術動向を振り返り、そこから学べる教訓について考察してみたものです。 歴史は常に、後から見れば明らかなことが、当時は見えなかったという教訓を与えてくれます。 そして、今私たちが「正しい」と信じていることもまた、20年後には違う評価を受けているかもしれません。 だからこそ、振り返ることには意味があるとおもいます。同じ轍を踏まないために。 はじめに:20年前の熱狂を覚えていますか 2000年代初頭。 私はSOA(サービス指向アーキテクチャ)に本気で取り組んでいました。 当時、SOAは「次世代のエンタープライズアーキテクチャ」として、業界全体が熱狂していました。 カンファレンスに行けば満員御礼、ベンダーのブースには人だかり、書店にも関連の書籍がちらほらと。 SOAP、SOAP with attachments、JAX-RPC、WS-Security、WS-ReliableMessaging、WS-AtomicTransaction... 仕様書の山と格闘する日々でした。 あれから

By Qualiteg コンサルティング
DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部