[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

多くのクライアントが仮説探索インタビュー後の分析を怠りがちです。インタビュー結果をデータ化し、テーマごとにカテゴライズして深く分析することで、パターンや洞察を抽出し、具体的な示唆を開発チームに報告するプロセスが重要です。

[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


せっかく仮説探索インタビューをしてもそのあとのインタビュー分析をしないクライアント企業が多く、インタビュー分析の重要性についてアドバイスさせていただくことが多いです。

本日は、仮説探索インタビューの分析手法について解説させていただきます。

まずはデータの整理と分類をしましょう

まず、インタビューから得られた全てのデータをまとめ、テキスト化します。これには、音声録音の書き起こしや、メモのデジタル化が含まれますが、おすすめはあとで分類しやすくするために、それぞれの意見をポストイットやオンラインポストイットに書きだししてみてください。

次に、それぞれの発言データをテーマやカテゴリーに基づいて分類します。これにより、関連する情報が集約され、分析しやすくなります。例えば、ユーザーの悩み、好み、使用状況などのテーマごとにデータを整理して、カテゴライズしていきます。

person in gray shirt holding white printer paper

発言録をもとに深い分析と洞察の抽出を実施しましょう

分類されたデータを基に、深い内容分析を行います。ここで、特定のパターン、頻繁に出現するテーマ、意外な意見などを特定します。

データから洞察を抽出する際には、直感だけでなく、データに基づいた論理的な推論を用いて、なぜそのような意見が出たのか、その背後にある理由を探ります。参加者のコメントや、もともと聞いていた参加者の属性情報などからユーザーのニーズや問題点を読み解きます。

イノベーション創出の鍵は、企業内部の強みと外部リソースの最適なバランスにあります。株式会社Qualitegの Innovation-Crossは、その絶妙なバランスを設計する共創支援プログラム。企業の現状と潜在力を徹底分析し、内部で伸ばすべき領域と外部に求めるべき領域を明確化します。

アイデアワークショップで社内の創造性を引き出しながら、オープンイノベーションやパートナー開拓で「自社だけでは補えない」要素を外部から取り込む—このバランスのとれたアプローチで、真の革新を実現。経験豊富な専門コンサルタントが、御社の特性に合わせた最適な内外リソースの組み合わせを設計し、持続可能なイノベーション創出の仕組みを構築します。内と外の力を掛け合わせる、この相乗効果が未来を創ります。

示唆の整理ができたら、開発チームと事業責任者に報告を

抽出した洞察をもとに、具体的な示唆を整理します。これは、仮説を再構築するための基盤となる情報です。

たとえば、事例で上げたA社の都市部で忙しく働くビジネスマンの生活充実度を向上させるサービスを検討のため、「自身のキャリアアップのためにサポートができるサービス」の競合サービスから、ユーザーのインサイトを分析するという想定でお話ししましょう。

なぜ今、キャリアアップが必要と考えているのか、自身の職場の環境が厳しくなってきている、試しに転職サービスに登録してみたが、思うような仕事の紹介がない、同期がMBAを取得して転職を実現したなど、ユーザーがいまキャリアアップが必要と考えている背景は、このような理由があるから、自身の気持ちが動かされたのだということを明確化する必要があります。

情報が整理できた後には、この分析結果を報告するステップが必要です。示唆を報告する際には、クリアで理解しやすい形で、どのようにこれらの洞察が元の仮説に影響を与えるかを説明します。

ユーザーが抱えている真の課題は何か、それらに対して自社はどのようなソリューションの展開が可能か、具体的にイメージしながら報告資料を作成してみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

「AIを作る国」から「AIで勝つ国」へ ── 日本のAI投資戦略を再設計する【前編】── 国産LLM・データセンター・データ主権の現在地を検証する

「AIを作る国」から「AIで勝つ国」へ ── 日本のAI投資戦略を再設計する【前編】── 国産LLM・データセンター・データ主権の現在地を検証する

こんにちは! 2025年から2026年にかけて、日本のAI関連投資が急速に動いています。 国産LLMの開発、データセンターの建設ラッシュ、政府による支援策の拡充。「日本もAIで遅れを取るわけにはいかない」という危機感が、はっきりと数字に表れています。 この動き自体は歓迎すべきことですし、何もしないよりずっといい。 ただ、日々 AI活用の現場に立ち会っている中で、ちょっとした違和感を覚えることがあります。 予算は動いている。 意思もある。 でも、この方向で大丈夫なんだろうか、と。 もちろん未来のことは誰にもわかりません。 ただ、公開されているデータを並べてみると、少なくとも「ちょっと立ち止まって考えてみてもいいんじゃないか」と思える材料がいくつか見えてきます。 本稿では前後編に分けて、その材料を整理してみます。 前編では国産LLM、データセンター投資、データ主権の3テーマ。 後編では「SaaS is Dead」の構造変化と、この環境下でどういうポジションの取り方がありえるかを考えます。 第1章:国産LLMの現在地 ── 規模の話をしよう 国内の大手通信事業

By Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第5回 ブラウザ設定と認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第5回 ブラウザ設定と認証

こんにちは、今回はシリーズ第5回「ブラウザ設定と認証」について解説いたします! さて、前回(第4回)では、プロキシサーバーをドメインに参加させることで、ChatGPTやClaudeへのアクセスを「誰が」行ったかを確実に特定する仕組みを解説しました。「信頼の連鎖」の概念や、Windows版Squidなら1時間で構築できる環境、Negotiate/NTLM/Basicという3段階の認証フォールバック機構について理解いただけたかと思います。 しかし、せっかくサーバー側で完璧な統合Windows認証環境を構築しても、ブラウザ側の設定が適切でなければ、ユーザーには毎回パスワード入力ダイアログが表示されてしまいます。 「Edgeだと自動でログインできるのに、Chromeだとパスワードを聞かれる」 「同じサーバーなのにURLの書き方で動作が違う」 これらはヘルプデスクに寄せられる典型的な問い合わせです。(ただ、業務に好きなブラウザ使っていいよ、という企業はそんなに多くはないとおもいます) 今回は、統合Windows認証がブラウザでどのように動作するのか、その仕組みから各ブラウザ(Edge/

By Qualiteg AIセキュリティチーム, Qualiteg コンサルティング
スライドパズルを解くAIから学ぶ、「考える」の正体

スライドパズルを解くAIから学ぶ、「考える」の正体

こんにちは! 「このパズル、AIの教科書に載ってるらしいよ」 子供の頃に遊んだスライドパズル。いや、大人が遊んでも楽しいです。 数字のタイルをカチャカチャ動かして揃えるあれです。実はこのシンプルなパズルが、AI研究の出発点のひとつだったって知ってました? 今回は、このパズルを題材に「AIがどうやって考えているのか」を解き明かしていきます。しかも、ここで使われている手法は、Google Mapsの経路探索からChatGPTまで、現代の様々な技術のベースになっているんです。 まず遊んでみよう 理屈の前に、まずは感覚を思い出してみてください。 最初に shuffle をクリックすると、配置がシャッフルされゲームを開始できます。 ちなみに必ず解くことができるようになっていますが、慣れていないとそれなりに難しいかもしれません。 どうでしょう? 何手でクリアできましたか? クリアできなくても大丈夫です。記事後半で、実際にAIが解いてくれる機能つきゲームも掲載しています^^ 以下は動画です。本ブログで紹介するアルゴリズムで実際にパズルを解く様子をご覧いただけます

By Qualiteg 研究部
楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部