[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

多くのクライアントが仮説探索インタビュー後の分析を怠りがちです。インタビュー結果をデータ化し、テーマごとにカテゴライズして深く分析することで、パターンや洞察を抽出し、具体的な示唆を開発チームに報告するプロセスが重要です。

[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


せっかく仮説探索インタビューをしてもそのあとのインタビュー分析をしないクライアント企業が多く、インタビュー分析の重要性についてアドバイスさせていただくことが多いです。

本日は、仮説探索インタビューの分析手法について解説させていただきます。

まずはデータの整理と分類をしましょう

まず、インタビューから得られた全てのデータをまとめ、テキスト化します。これには、音声録音の書き起こしや、メモのデジタル化が含まれますが、おすすめはあとで分類しやすくするために、それぞれの意見をポストイットやオンラインポストイットに書きだししてみてください。

次に、それぞれの発言データをテーマやカテゴリーに基づいて分類します。これにより、関連する情報が集約され、分析しやすくなります。例えば、ユーザーの悩み、好み、使用状況などのテーマごとにデータを整理して、カテゴライズしていきます。

person in gray shirt holding white printer paper

発言録をもとに深い分析と洞察の抽出を実施しましょう

分類されたデータを基に、深い内容分析を行います。ここで、特定のパターン、頻繁に出現するテーマ、意外な意見などを特定します。

データから洞察を抽出する際には、直感だけでなく、データに基づいた論理的な推論を用いて、なぜそのような意見が出たのか、その背後にある理由を探ります。参加者のコメントや、もともと聞いていた参加者の属性情報などからユーザーのニーズや問題点を読み解きます。

イノベーション創出の鍵は、企業内部の強みと外部リソースの最適なバランスにあります。株式会社Qualitegの Innovation-Crossは、その絶妙なバランスを設計する共創支援プログラム。企業の現状と潜在力を徹底分析し、内部で伸ばすべき領域と外部に求めるべき領域を明確化します。

アイデアワークショップで社内の創造性を引き出しながら、オープンイノベーションやパートナー開拓で「自社だけでは補えない」要素を外部から取り込む—このバランスのとれたアプローチで、真の革新を実現。経験豊富な専門コンサルタントが、御社の特性に合わせた最適な内外リソースの組み合わせを設計し、持続可能なイノベーション創出の仕組みを構築します。内と外の力を掛け合わせる、この相乗効果が未来を創ります。

示唆の整理ができたら、開発チームと事業責任者に報告を

抽出した洞察をもとに、具体的な示唆を整理します。これは、仮説を再構築するための基盤となる情報です。

たとえば、事例で上げたA社の都市部で忙しく働くビジネスマンの生活充実度を向上させるサービスを検討のため、「自身のキャリアアップのためにサポートができるサービス」の競合サービスから、ユーザーのインサイトを分析するという想定でお話ししましょう。

なぜ今、キャリアアップが必要と考えているのか、自身の職場の環境が厳しくなってきている、試しに転職サービスに登録してみたが、思うような仕事の紹介がない、同期がMBAを取得して転職を実現したなど、ユーザーがいまキャリアアップが必要と考えている背景は、このような理由があるから、自身の気持ちが動かされたのだということを明確化する必要があります。

情報が整理できた後には、この分析結果を報告するステップが必要です。示唆を報告する際には、クリアで理解しやすい形で、どのようにこれらの洞察が元の仮説に影響を与えるかを説明します。

ユーザーが抱えている真の課題は何か、それらに対して自社はどのようなソリューションの展開が可能か、具体的にイメージしながら報告資料を作成してみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング