[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

多くのクライアントが仮説探索インタビュー後の分析を怠りがちです。インタビュー結果をデータ化し、テーマごとにカテゴライズして深く分析することで、パターンや洞察を抽出し、具体的な示唆を開発チームに報告するプロセスが重要です。

[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


せっかく仮説探索インタビューをしてもそのあとのインタビュー分析をしないクライアント企業が多く、インタビュー分析の重要性についてアドバイスさせていただくことが多いです。

本日は、仮説探索インタビューの分析手法について解説させていただきます。

まずはデータの整理と分類をしましょう

まず、インタビューから得られた全てのデータをまとめ、テキスト化します。これには、音声録音の書き起こしや、メモのデジタル化が含まれますが、おすすめはあとで分類しやすくするために、それぞれの意見をポストイットやオンラインポストイットに書きだししてみてください。

次に、それぞれの発言データをテーマやカテゴリーに基づいて分類します。これにより、関連する情報が集約され、分析しやすくなります。例えば、ユーザーの悩み、好み、使用状況などのテーマごとにデータを整理して、カテゴライズしていきます。

発言録をもとに深い分析と洞察の抽出を実施しましょう

分類されたデータを基に、深い内容分析を行います。ここで、特定のパターン、頻繁に出現するテーマ、意外な意見などを特定します。

データから洞察を抽出する際には、直感だけでなく、データに基づいた論理的な推論を用いて、なぜそのような意見が出たのか、その背後にある理由を探ります。参加者のコメントや、もともと聞いていた参加者の属性情報などからユーザーのニーズや問題点を読み解きます。

person in gray shirt holding white printer paper

示唆の整理ができたら、開発チームと事業責任者に報告を

抽出した洞察をもとに、具体的な示唆を整理します。これは、仮説を再構築するための基盤となる情報です。

たとえば、事例で上げたA社の都市部で忙しく働くビジネスマンの生活充実度を向上させるサービスを検討のため、「自身のキャリアアップのためにサポートができるサービス」の競合サービスから、ユーザーのインサイトを分析するという想定でお話ししましょう。

なぜ今、キャリアアップが必要と考えているのか、自身の職場の環境が厳しくなってきている、試しに転職サービスに登録してみたが、思うような仕事の紹介がない、同期がMBAを取得して転職を実現したなど、ユーザーがいまキャリアアップが必要と考えている背景は、このような理由があるから、自身の気持ちが動かされたのだということを明確化する必要があります。

情報が整理できた後には、この分析結果を報告するステップが必要です。示唆を報告する際には、クリアで理解しやすい形で、どのようにこれらの洞察が元の仮説に影響を与えるかを説明します。

ユーザーが抱えている真の課題は何か、それらに対して自社はどのようなソリューションの展開が可能か、具体的にイメージしながら報告資料を作成してみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部