[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

多くのクライアントが仮説探索インタビュー後の分析を怠りがちです。インタビュー結果をデータ化し、テーマごとにカテゴライズして深く分析することで、パターンや洞察を抽出し、具体的な示唆を開発チームに報告するプロセスが重要です。

[AI新規事業創出]Qualitegが考える、仮説探索の為のインタビュー結果示唆出し方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


せっかく仮説探索インタビューをしてもそのあとのインタビュー分析をしないクライアント企業が多く、インタビュー分析の重要性についてアドバイスさせていただくことが多いです。

本日は、仮説探索インタビューの分析手法について解説させていただきます。

まずはデータの整理と分類をしましょう

まず、インタビューから得られた全てのデータをまとめ、テキスト化します。これには、音声録音の書き起こしや、メモのデジタル化が含まれますが、おすすめはあとで分類しやすくするために、それぞれの意見をポストイットやオンラインポストイットに書きだししてみてください。

次に、それぞれの発言データをテーマやカテゴリーに基づいて分類します。これにより、関連する情報が集約され、分析しやすくなります。例えば、ユーザーの悩み、好み、使用状況などのテーマごとにデータを整理して、カテゴライズしていきます。

person in gray shirt holding white printer paper

発言録をもとに深い分析と洞察の抽出を実施しましょう

分類されたデータを基に、深い内容分析を行います。ここで、特定のパターン、頻繁に出現するテーマ、意外な意見などを特定します。

データから洞察を抽出する際には、直感だけでなく、データに基づいた論理的な推論を用いて、なぜそのような意見が出たのか、その背後にある理由を探ります。参加者のコメントや、もともと聞いていた参加者の属性情報などからユーザーのニーズや問題点を読み解きます。

イノベーション創出の鍵は、企業内部の強みと外部リソースの最適なバランスにあります。株式会社Qualitegの Innovation-Crossは、その絶妙なバランスを設計する共創支援プログラム。企業の現状と潜在力を徹底分析し、内部で伸ばすべき領域と外部に求めるべき領域を明確化します。

アイデアワークショップで社内の創造性を引き出しながら、オープンイノベーションやパートナー開拓で「自社だけでは補えない」要素を外部から取り込む—このバランスのとれたアプローチで、真の革新を実現。経験豊富な専門コンサルタントが、御社の特性に合わせた最適な内外リソースの組み合わせを設計し、持続可能なイノベーション創出の仕組みを構築します。内と外の力を掛け合わせる、この相乗効果が未来を創ります。

示唆の整理ができたら、開発チームと事業責任者に報告を

抽出した洞察をもとに、具体的な示唆を整理します。これは、仮説を再構築するための基盤となる情報です。

たとえば、事例で上げたA社の都市部で忙しく働くビジネスマンの生活充実度を向上させるサービスを検討のため、「自身のキャリアアップのためにサポートができるサービス」の競合サービスから、ユーザーのインサイトを分析するという想定でお話ししましょう。

なぜ今、キャリアアップが必要と考えているのか、自身の職場の環境が厳しくなってきている、試しに転職サービスに登録してみたが、思うような仕事の紹介がない、同期がMBAを取得して転職を実現したなど、ユーザーがいまキャリアアップが必要と考えている背景は、このような理由があるから、自身の気持ちが動かされたのだということを明確化する必要があります。

情報が整理できた後には、この分析結果を報告するステップが必要です。示唆を報告する際には、クリアで理解しやすい形で、どのようにこれらの洞察が元の仮説に影響を与えるかを説明します。

ユーザーが抱えている真の課題は何か、それらに対して自社はどのようなソリューションの展開が可能か、具体的にイメージしながら報告資料を作成してみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部