Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


Qualitegセレクション、アイディア深堀編もいよいよ第3弾!今回は、複数人でアイディアを発散・深堀する際に効果的な RoundRobin(ラウンドロビン) という手法をご紹介します。ブレインストーミングに行き詰まった時や、多様な視点を取り入れたい時にぜひ活用してみてください。

RoundRobinとは?

RoundRobinとは、様々な場面で用いられますが、大抵の場合において「持ち回り」、つまり「何かの役割・出番をたくさんの物事・人員で交替しあう」というような意味で使うことが多いです。

ここでは、参加者全員が順番にアイディアを出し、それを記録していく手法をRoundRobinと呼んでいます。順番に意見を述べることで、発言力の差による偏りをなくし、全員が積極的に参加できる環境を作ることができます。

デザインシンキング界では結構メジャーなコンテンツであるRoundRobinなのですが、私が今まで育成に携わった一部上場企業様など数百人の方はほとんど誰もご存じなく、コンサル業界でも本でキーワードだけ読んだことあるという人は聞きますが、実際知っている人や体験したことある人が少ないので、私も教え甲斐がある、鉄板コンテンツとなっております^^

イノベーションは、企業の成長に不可欠でありながら、最も難しい挑戦でもあります。株式会社Qualitegの Innovation-Crossは、その困難な道のりを共に歩む共創支援プログラムです。

「自社だけでは革新が難しい」という現実に向き合い、外部との協業による価値創出を包括的にサポート。現状分析から戦略策定、実行まで、経験豊富な専門コンサルタントが寄り添います。アイデアワークショップ、ハッカソン企画、AI技術活用など、多様なアプローチで御社のイノベーション創出を促進し、内部と外部の知恵を掛け合わせた真の革新へと導きます。イノベーションの壁を共に乗り越え、新たな未来を創造しましょう。

QualitegにおけるRoundRobinの活用シーン

Qualitegでは、ユーザーインタビューの結果分析や、新しいサービスの企画立案など、様々な場面でRoundRobinを活用しています。例えば、ユーザーインタビュー後、

  • 「ユーザーの課題は何だろう?」
  • 「その課題を解決するサービスとは?」

といったテーマでRoundRobinを行い、メンバーそれぞれの視点から意見を出し合い、分析・発想を深めていきます。そのため、4人くらいのメンバーで始めるのがよいでしょう。5人以上いるとラウンドしづらいのでお勧めは4人までです。

RoundRobinの効果

RoundRobinを活用することで、以下のような効果が期待できます。

  • 多様なアイディアの創出: 全員が意見を出すことで、1人では思いつかないようなユニークなアイディアが生まれる可能性が高まります。
  • 議論の活性化: 順番に意見を述べることで、発言へのハードルが下がり、活発な議論につながります。
  • チームの一体感向上: 全員が参加することで、チームとしての意識が高まり、一体感が生まれます。
  • 公平性の確保: 発言力の差に関係なく、全員が平等に意見を述べることができます。

RoundRobinの実施方法

  1. テーマ設定: まず、議論したいテーマを明確に設定します。
  2. 参加者決定: テーマに関連するメンバーを集めます。
  3. 順番決め: 参加者の発言順を決めます。
  4. アイディア出し: 順番にアイディアを出し、それを記録していきます。
  5. 時間制限: 各自の発言時間や、全体の実施時間に制限を設けることで、議論を効率的に進めることができます。
  6. アイディアの整理: 出されたアイディアをグルーピングしたり、優先順位をつけたりして整理します。

ここで結構真剣にルールを説明しておかないと、日本だとRoundというワードがしっくりこないのか、混乱してしまうチームもあるので要注意です。(米国で同じコンテンツをやるときにはほとんどみんな混乱しないのですが、、、、w)

Qualiteg流!RoundRobin成功のポイント

心理的安全性の確保

    • 自由に意見を言える雰囲気作りが大切です。否定的な意見や突拍子もないアイディアも歓迎しましょう。

ファシリテーターの役割

    • 円滑な進行のために、ファシリテーターを置くことをおすすめします。ファシリテーターは、時間管理や議論の整理、参加者の発言を促すなどの役割を担います。

記録の可視化

    • ホワイトボードやオンラインツールなどを活用し、アイディアを可視化することで、議論の活性化につながります。

まとめ

RoundRobinは、多様なアイディアを発散・深堀し、チームで課題解決に取り組む際に非常に効果的な手法です。Qualitegでは、この手法を積極的に活用することで、より質の高いサービスを提供できるよう日々努めています。ぜひ、皆さんもRoundRobinを活用して、チームでの議論をより活発で創造的なものにしてみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部
LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

こんにちは! 本日は LLMサービスの自社構築する際の推論基盤プロビジョニング、GPUプロビジョニングについて数回にわけて解説いたします。 はじめに LLMの進化に伴い、ChatGPTやClaudeといったパブリックなLLMの活用は企業においても急速に広がってきました。しかし先進的な企業はこれらの汎用LLMに加えて、「領域特化型」「ドメイン特化型」といった専用LLMの構築へと歩みを進めています。こうした動きの背景には、企業固有の専門知識への対応力強化と情報セキュリティの確保という二つの重要なニーズがあります。 一般的なパブリックLLMでは対応できない企業固有の専門知識や機密情報の取り扱いが必要なケースが増えているため、自社LLMの構築や自社サーバーでの運用を検討する企業が急増しています。特に金融、医療、製造、法務といった専門性の高い領域では、業界特化型の独自LLMが競争優位性をもたらすと認識されています。 しかし、業界特化型のLLMを自社で運用することは簡単ではありません。自社運用を決断した場合、まず最初に取り組むべきは適切な推論環境の整備です。オンプレミス環境を構築するに

By Qualiteg コンサルティング