Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


Qualitegセレクション、アイディア深堀編もいよいよ第3弾!今回は、複数人でアイディアを発散・深堀する際に効果的な RoundRobin(ラウンドロビン) という手法をご紹介します。ブレインストーミングに行き詰まった時や、多様な視点を取り入れたい時にぜひ活用してみてください。

RoundRobinとは?

RoundRobinとは、様々な場面で用いられますが、大抵の場合において「持ち回り」、つまり「何かの役割・出番をたくさんの物事・人員で交替しあう」というような意味で使うことが多いです。

ここでは、参加者全員が順番にアイディアを出し、それを記録していく手法をRoundRobinと呼んでいます。順番に意見を述べることで、発言力の差による偏りをなくし、全員が積極的に参加できる環境を作ることができます。

デザインシンキング界では結構メジャーなコンテンツであるRoundRobinなのですが、私が今まで育成に携わった一部上場企業様など数百人の方はほとんど誰もご存じなく、コンサル業界でも本でキーワードだけ読んだことあるという人は聞きますが、実際知っている人や体験したことある人が少ないので、私も教え甲斐がある、鉄板コンテンツとなっております^^

イノベーションは、企業の成長に不可欠でありながら、最も難しい挑戦でもあります。株式会社Qualitegの Innovation-Crossは、その困難な道のりを共に歩む共創支援プログラムです。

「自社だけでは革新が難しい」という現実に向き合い、外部との協業による価値創出を包括的にサポート。現状分析から戦略策定、実行まで、経験豊富な専門コンサルタントが寄り添います。アイデアワークショップ、ハッカソン企画、AI技術活用など、多様なアプローチで御社のイノベーション創出を促進し、内部と外部の知恵を掛け合わせた真の革新へと導きます。イノベーションの壁を共に乗り越え、新たな未来を創造しましょう。

QualitegにおけるRoundRobinの活用シーン

Qualitegでは、ユーザーインタビューの結果分析や、新しいサービスの企画立案など、様々な場面でRoundRobinを活用しています。例えば、ユーザーインタビュー後、

  • 「ユーザーの課題は何だろう?」
  • 「その課題を解決するサービスとは?」

といったテーマでRoundRobinを行い、メンバーそれぞれの視点から意見を出し合い、分析・発想を深めていきます。そのため、4人くらいのメンバーで始めるのがよいでしょう。5人以上いるとラウンドしづらいのでお勧めは4人までです。

RoundRobinの効果

RoundRobinを活用することで、以下のような効果が期待できます。

  • 多様なアイディアの創出: 全員が意見を出すことで、1人では思いつかないようなユニークなアイディアが生まれる可能性が高まります。
  • 議論の活性化: 順番に意見を述べることで、発言へのハードルが下がり、活発な議論につながります。
  • チームの一体感向上: 全員が参加することで、チームとしての意識が高まり、一体感が生まれます。
  • 公平性の確保: 発言力の差に関係なく、全員が平等に意見を述べることができます。

RoundRobinの実施方法

  1. テーマ設定: まず、議論したいテーマを明確に設定します。
  2. 参加者決定: テーマに関連するメンバーを集めます。
  3. 順番決め: 参加者の発言順を決めます。
  4. アイディア出し: 順番にアイディアを出し、それを記録していきます。
  5. 時間制限: 各自の発言時間や、全体の実施時間に制限を設けることで、議論を効率的に進めることができます。
  6. アイディアの整理: 出されたアイディアをグルーピングしたり、優先順位をつけたりして整理します。

ここで結構真剣にルールを説明しておかないと、日本だとRoundというワードがしっくりこないのか、混乱してしまうチームもあるので要注意です。(米国で同じコンテンツをやるときにはほとんどみんな混乱しないのですが、、、、w)

Qualiteg流!RoundRobin成功のポイント

心理的安全性の確保

    • 自由に意見を言える雰囲気作りが大切です。否定的な意見や突拍子もないアイディアも歓迎しましょう。

ファシリテーターの役割

    • 円滑な進行のために、ファシリテーターを置くことをおすすめします。ファシリテーターは、時間管理や議論の整理、参加者の発言を促すなどの役割を担います。

記録の可視化

    • ホワイトボードやオンラインツールなどを活用し、アイディアを可視化することで、議論の活性化につながります。

まとめ

RoundRobinは、多様なアイディアを発散・深堀し、チームで課題解決に取り組む際に非常に効果的な手法です。Qualitegでは、この手法を積極的に活用することで、より質の高いサービスを提供できるよう日々努めています。ぜひ、皆さんもRoundRobinを活用して、チームでの議論をより活発で創造的なものにしてみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部