Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


はじめに

スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。

そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。

1. ユーザー中心の問題定義

サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします:

  • ターゲットユーザーへの徹底的なインタビュー
  • 既存の解決策の分析と不足点の特定
  • ユーザーの行動パターンと感情の理解

自分たちがこれでイケてると思って妄想でサービスを先に作ってしまっても、そのサービスを購入してくれる人がいなくてはなりません。また、他社に簡単に模倣されてしまうようなソリューションでもNGです。

その課題が明確で対策としてサービスが欲しいと思ってくれる、もっと言うと、お金を払ってまでそのソリューションサービスを利用したいと思ってくれる顧客が確実にいる何人もいることが担保されている状態になっているかを確認する必要があります。

2. MVPの設計と検証

問題が定義できたら、最小限の機能で検証を行います。ここでのポイントは:

  • コア機能の特定と優先順位付け
  • 実装コストと価値のバランス
  • フィードバックループの確立
  • 自社の差異化要素を盛り込めるか

特に重要なのは、MVPをただの簡易版として捉えないことです。これは学習ツールであり、市場との対話の手段です。またその際に他社でも簡単に真似できてしまうようなソリューション案は市場競争力が低いと思われるため、自社の強みを活かせるソリューションに昇華できているかが重要なポイントになります。

株式会社Qualitegの Innovation-Crossは、「成果」にこだわるイノベーション共創支援プログラムです。企業の現状分析をもとに、外部との協業による価値創出の戦略を策定し、明確なKPIと実行計画で革新を推進します。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多様なアプローチを駆使し、御社のビジネス課題に対する具体的なソリューションを創出。経験豊富な専門コンサルタントが、コンセプト策定から実装まで一貫してサポートし、「自社内だけでは難しい」革新を、外部との共創で確実に実現します。イノベーションを単なる挑戦で終わらせない—それが私たちの約束です。

3. 収益モデルとの整合性

優れたサービス設計は、持続可能なビジネスモデルと不可分です。以下の要素を考慮に入れましょう:

  • ユーザー獲得コストと顧客生涯価値
  • 解約率の予測と対策
  • スケーラビリティの検討
  • 自社でずっとマネージしていけそうなビジネスモデルになるか

スタートアップもそうですし、大企業でも新規事業創出にアサインできるメンバーはまだ事業が大きくなる前なので非常に限定的です。自社で確保できるリソースでこの事業をしっかりマネージしていけそうかという観点でしっかり考えていきましょう。

4. 実装フェーズでの留意点

設計から実装に移行する際は、以下の点に注意が必要です:

  • 開発チームとの密なコミュニケーション
  • 技術的制約の理解と受容
  • フィードバックに基づく迅速な修正

開発リソースのマネージも非常に立ち上げ期では重要になります。特にスタートアップは開発開始からリリースまでの時間が長くなってしまうと、そのすきに大企業から類似のサービスが格安で出てしまうこともありますので、タイムリーに市場導入できるような実装計画を立てることが必要です。

5. 継続的な改善サイクル

サービス設計は一度で完成ではありません。以下のサイクルを回し続けることが重要です:

  • データに基づく仮説検証
  • ユーザーフィードバックの定期的な収集
  • 市場環境の変化への適応

まずはβ版をリリースして市場テストをしながら、追加機能拡張などをしていきましょう。最初から大風呂敷を拡げるとpivotしづらくなりますので、MVPとして市場投入後に、市場ニーズに合わせてタイムリーに進化させていくことが新規事業開発におけるKFSとなります。

まとめ

効果的なサービス設計は、ユーザー理解、ビジネスモデル、技術的実現性の3つの要素のバランスを取ることです。重要なのは、完璧を目指すのではなく、継続的な改善を前提とした設計アプローチを採用することです。

スタートアップの成功は、優れたサービス設計に大きく依存します。しかし、それは一朝一夕には実現できません。本記事で紹介したフレームワークを参考に、自社のコンテキストに合わせた設計プロセスを確立していただければ幸いです。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部