Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


はじめに

スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。

そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。

1. ユーザー中心の問題定義

サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします:

  • ターゲットユーザーへの徹底的なインタビュー
  • 既存の解決策の分析と不足点の特定
  • ユーザーの行動パターンと感情の理解

自分たちがこれでイケてると思って妄想でサービスを先に作ってしまっても、そのサービスを購入してくれる人がいなくてはなりません。また、他社に簡単に模倣されてしまうようなソリューションでもNGです。

その課題が明確で対策としてサービスが欲しいと思ってくれる、もっと言うと、お金を払ってまでそのソリューションサービスを利用したいと思ってくれる顧客が確実にいる何人もいることが担保されている状態になっているかを確認する必要があります。

2. MVPの設計と検証

問題が定義できたら、最小限の機能で検証を行います。ここでのポイントは:

  • コア機能の特定と優先順位付け
  • 実装コストと価値のバランス
  • フィードバックループの確立
  • 自社の差異化要素を盛り込めるか

特に重要なのは、MVPをただの簡易版として捉えないことです。これは学習ツールであり、市場との対話の手段です。またその際に他社でも簡単に真似できてしまうようなソリューション案は市場競争力が低いと思われるため、自社の強みを活かせるソリューションに昇華できているかが重要なポイントになります。

株式会社Qualitegの Innovation-Crossは、「成果」にこだわるイノベーション共創支援プログラムです。企業の現状分析をもとに、外部との協業による価値創出の戦略を策定し、明確なKPIと実行計画で革新を推進します。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多様なアプローチを駆使し、御社のビジネス課題に対する具体的なソリューションを創出。経験豊富な専門コンサルタントが、コンセプト策定から実装まで一貫してサポートし、「自社内だけでは難しい」革新を、外部との共創で確実に実現します。イノベーションを単なる挑戦で終わらせない—それが私たちの約束です。

3. 収益モデルとの整合性

優れたサービス設計は、持続可能なビジネスモデルと不可分です。以下の要素を考慮に入れましょう:

  • ユーザー獲得コストと顧客生涯価値
  • 解約率の予測と対策
  • スケーラビリティの検討
  • 自社でずっとマネージしていけそうなビジネスモデルになるか

スタートアップもそうですし、大企業でも新規事業創出にアサインできるメンバーはまだ事業が大きくなる前なので非常に限定的です。自社で確保できるリソースでこの事業をしっかりマネージしていけそうかという観点でしっかり考えていきましょう。

4. 実装フェーズでの留意点

設計から実装に移行する際は、以下の点に注意が必要です:

  • 開発チームとの密なコミュニケーション
  • 技術的制約の理解と受容
  • フィードバックに基づく迅速な修正

開発リソースのマネージも非常に立ち上げ期では重要になります。特にスタートアップは開発開始からリリースまでの時間が長くなってしまうと、そのすきに大企業から類似のサービスが格安で出てしまうこともありますので、タイムリーに市場導入できるような実装計画を立てることが必要です。

5. 継続的な改善サイクル

サービス設計は一度で完成ではありません。以下のサイクルを回し続けることが重要です:

  • データに基づく仮説検証
  • ユーザーフィードバックの定期的な収集
  • 市場環境の変化への適応

まずはβ版をリリースして市場テストをしながら、追加機能拡張などをしていきましょう。最初から大風呂敷を拡げるとpivotしづらくなりますので、MVPとして市場投入後に、市場ニーズに合わせてタイムリーに進化させていくことが新規事業開発におけるKFSとなります。

まとめ

効果的なサービス設計は、ユーザー理解、ビジネスモデル、技術的実現性の3つの要素のバランスを取ることです。重要なのは、完璧を目指すのではなく、継続的な改善を前提とした設計アプローチを採用することです。

スタートアップの成功は、優れたサービス設計に大きく依存します。しかし、それは一朝一夕には実現できません。本記事で紹介したフレームワークを参考に、自社のコンテキストに合わせた設計プロセスを確立していただければ幸いです。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

「AIを作る国」から「AIで勝つ国」へ ── 日本のAI投資戦略を再設計する【前編】── 国産LLM・データセンター・データ主権の現在地を検証する

「AIを作る国」から「AIで勝つ国」へ ── 日本のAI投資戦略を再設計する【前編】── 国産LLM・データセンター・データ主権の現在地を検証する

こんにちは! 2025年から2026年にかけて、日本のAI関連投資が急速に動いています。 国産LLMの開発、データセンターの建設ラッシュ、政府による支援策の拡充。「日本もAIで遅れを取るわけにはいかない」という危機感が、はっきりと数字に表れています。 この動き自体は歓迎すべきことですし、何もしないよりずっといい。 ただ、日々 AI活用の現場に立ち会っている中で、ちょっとした違和感を覚えることがあります。 予算は動いている。 意思もある。 でも、この方向で大丈夫なんだろうか、と。 もちろん未来のことは誰にもわかりません。 ただ、公開されているデータを並べてみると、少なくとも「ちょっと立ち止まって考えてみてもいいんじゃないか」と思える材料がいくつか見えてきます。 本稿では前後編に分けて、その材料を整理してみます。 前編では国産LLM、データセンター投資、データ主権の3テーマ。 後編では「SaaS is Dead」の構造変化と、この環境下でどういうポジションの取り方がありえるかを考えます。 第1章:国産LLMの現在地 ── 規模の話をしよう 国内の大手通信事業

By Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第5回 ブラウザ設定と認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第5回 ブラウザ設定と認証

こんにちは、今回はシリーズ第5回「ブラウザ設定と認証」について解説いたします! さて、前回(第4回)では、プロキシサーバーをドメインに参加させることで、ChatGPTやClaudeへのアクセスを「誰が」行ったかを確実に特定する仕組みを解説しました。「信頼の連鎖」の概念や、Windows版Squidなら1時間で構築できる環境、Negotiate/NTLM/Basicという3段階の認証フォールバック機構について理解いただけたかと思います。 しかし、せっかくサーバー側で完璧な統合Windows認証環境を構築しても、ブラウザ側の設定が適切でなければ、ユーザーには毎回パスワード入力ダイアログが表示されてしまいます。 「Edgeだと自動でログインできるのに、Chromeだとパスワードを聞かれる」 「同じサーバーなのにURLの書き方で動作が違う」 これらはヘルプデスクに寄せられる典型的な問い合わせです。(ただ、業務に好きなブラウザ使っていいよ、という企業はそんなに多くはないとおもいます) 今回は、統合Windows認証がブラウザでどのように動作するのか、その仕組みから各ブラウザ(Edge/

By Qualiteg AIセキュリティチーム, Qualiteg コンサルティング
スライドパズルを解くAIから学ぶ、「考える」の正体

スライドパズルを解くAIから学ぶ、「考える」の正体

こんにちは! 「このパズル、AIの教科書に載ってるらしいよ」 子供の頃に遊んだスライドパズル。いや、大人が遊んでも楽しいです。 数字のタイルをカチャカチャ動かして揃えるあれです。実はこのシンプルなパズルが、AI研究の出発点のひとつだったって知ってました? 今回は、このパズルを題材に「AIがどうやって考えているのか」を解き明かしていきます。しかも、ここで使われている手法は、Google Mapsの経路探索からChatGPTまで、現代の様々な技術のベースになっているんです。 まず遊んでみよう 理屈の前に、まずは感覚を思い出してみてください。 最初に shuffle をクリックすると、配置がシャッフルされゲームを開始できます。 ちなみに必ず解くことができるようになっていますが、慣れていないとそれなりに難しいかもしれません。 どうでしょう? 何手でクリアできましたか? クリアできなくても大丈夫です。記事後半で、実際にAIが解いてくれる機能つきゲームも掲載しています^^ 以下は動画です。本ブログで紹介するアルゴリズムで実際にパズルを解く様子をご覧いただけます

By Qualiteg 研究部
楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部