Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


はじめに

スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。

そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。

1. ユーザー中心の問題定義

サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします:

  • ターゲットユーザーへの徹底的なインタビュー
  • 既存の解決策の分析と不足点の特定
  • ユーザーの行動パターンと感情の理解

自分たちがこれでイケてると思って妄想でサービスを先に作ってしまっても、そのサービスを購入してくれる人がいなくてはなりません。また、他社に簡単に模倣されてしまうようなソリューションでもNGです。

その課題が明確で対策としてサービスが欲しいと思ってくれる、もっと言うと、お金を払ってまでそのソリューションサービスを利用したいと思ってくれる顧客が確実にいる何人もいることが担保されている状態になっているかを確認する必要があります。

2. MVPの設計と検証

問題が定義できたら、最小限の機能で検証を行います。ここでのポイントは:

  • コア機能の特定と優先順位付け
  • 実装コストと価値のバランス
  • フィードバックループの確立
  • 自社の差異化要素を盛り込めるか

特に重要なのは、MVPをただの簡易版として捉えないことです。これは学習ツールであり、市場との対話の手段です。またその際に他社でも簡単に真似できてしまうようなソリューション案は市場競争力が低いと思われるため、自社の強みを活かせるソリューションに昇華できているかが重要なポイントになります。

株式会社Qualitegの Innovation-Crossは、「成果」にこだわるイノベーション共創支援プログラムです。企業の現状分析をもとに、外部との協業による価値創出の戦略を策定し、明確なKPIと実行計画で革新を推進します。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多様なアプローチを駆使し、御社のビジネス課題に対する具体的なソリューションを創出。経験豊富な専門コンサルタントが、コンセプト策定から実装まで一貫してサポートし、「自社内だけでは難しい」革新を、外部との共創で確実に実現します。イノベーションを単なる挑戦で終わらせない—それが私たちの約束です。

3. 収益モデルとの整合性

優れたサービス設計は、持続可能なビジネスモデルと不可分です。以下の要素を考慮に入れましょう:

  • ユーザー獲得コストと顧客生涯価値
  • 解約率の予測と対策
  • スケーラビリティの検討
  • 自社でずっとマネージしていけそうなビジネスモデルになるか

スタートアップもそうですし、大企業でも新規事業創出にアサインできるメンバーはまだ事業が大きくなる前なので非常に限定的です。自社で確保できるリソースでこの事業をしっかりマネージしていけそうかという観点でしっかり考えていきましょう。

4. 実装フェーズでの留意点

設計から実装に移行する際は、以下の点に注意が必要です:

  • 開発チームとの密なコミュニケーション
  • 技術的制約の理解と受容
  • フィードバックに基づく迅速な修正

開発リソースのマネージも非常に立ち上げ期では重要になります。特にスタートアップは開発開始からリリースまでの時間が長くなってしまうと、そのすきに大企業から類似のサービスが格安で出てしまうこともありますので、タイムリーに市場導入できるような実装計画を立てることが必要です。

5. 継続的な改善サイクル

サービス設計は一度で完成ではありません。以下のサイクルを回し続けることが重要です:

  • データに基づく仮説検証
  • ユーザーフィードバックの定期的な収集
  • 市場環境の変化への適応

まずはβ版をリリースして市場テストをしながら、追加機能拡張などをしていきましょう。最初から大風呂敷を拡げるとpivotしづらくなりますので、MVPとして市場投入後に、市場ニーズに合わせてタイムリーに進化させていくことが新規事業開発におけるKFSとなります。

まとめ

効果的なサービス設計は、ユーザー理解、ビジネスモデル、技術的実現性の3つの要素のバランスを取ることです。重要なのは、完璧を目指すのではなく、継続的な改善を前提とした設計アプローチを採用することです。

スタートアップの成功は、優れたサービス設計に大きく依存します。しかし、それは一朝一夕には実現できません。本記事で紹介したフレームワークを参考に、自社のコンテキストに合わせた設計プロセスを確立していただければ幸いです。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング
自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング