Qualitegセレクション:アイディア深堀編④ストーリーボードの活用術

Qualitegセレクション:アイディア深堀編④ストーリーボードの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


お絵描きが楽しい★ストーリーボード

ユーザーインタビューやアイデア発想法などで得られたアイデア。素晴らしい可能性を秘めているものの、形にするにはまだ詳細が足りない、具体的にイメージしづらい、と感じることありませんか?

そんな時に役立つのがストーリーボードです。

Qualitegセレクション、アイディア深堀編④では、ストーリーボードを活用してアイデアを具体化し、サービスやプロダクトの質を高める方法をご紹介します。

普段のコンサルティングご支援でもストーリーボードやりましょう!と申し上げると「自分は絵を描くのが苦手だから」とおっしゃる方もいらっしゃいますが、全く問題ございません!

棒人間的な絵の方が余計な情報が入ってこないので、ユーザー体験がリアルに表現できるのでそれもまた良いUXとなるのです★では、解説を始めましょう。

なぜストーリーボードが重要なのか?

ストーリーボードは、映画やアニメーションの制作現場でよく使われる手法ですが、UX/UIデザインにおいても非常に強力なツールです。

ストーリーボードを使うメリット

アイデアを視覚的に表現できる

    • 抽象的なアイデアを具体的なシーンで表現することで、関係者全員が同じイメージを共有しやすくなります。

ユーザー視点で体験をシミュレーションできる

    • ユーザーがサービスやプロダクトをどのように利用するのか、ストーリーを通して追体験することで、潜在的な課題や改善点を発見できます。

感情やニーズを理解しやすくなる

    • ユーザーの表情や行動、周囲の状況などを描写することで、ユーザーの感情やニーズをより深く理解できます。

コミュニケーションツールとして有効

    • ストーリーボードは、開発チーム内だけでなく、クライアントやユーザーとのコミュニケーションツールとしても活用できます。

急速に変化する市場環境の中で、企業が持続的に成長するには、革新的な価値創造が不可欠です。株式会社Qualitegの Innovation-Crossは、その未来への扉を開く共創支援プログラム。

現状分析から戦略策定、実行支援まで、外部との協業による革新創出の全プロセスをサポートします。アイデアワークショップやハッカソン企画、最先端AI技術の活用など、多彩なアプローチで御社のイノベーション創出を加速。経験豊富な専門コンサルタントが、社内外のリソースを最適に組み合わせた次世代の価値創造へと導き、御社の持続的な成長と競争優位の確立を実現します。未来を創るのは、共創の力です。

ストーリーボード作成の手順

ユーザーペルソナを設定する

 ・ターゲットとなるユーザー像を明確化します。

ユーザーのゴールを定義する

 ・ユーザーがサービスやプロダクトを通して何を達成したいのかを明確にします。

主要なシーンを洗い出す

 ・ユーザーがサービスやプロダクトを利用する過程で、重要なシーンをピックアップします。

各シーンをスケッチする

 ・簡単なイラストと吹き出しを使って、各シーンを視覚的に表現します。

ストーリーを繋いで完成させる

 ・スケッチしたシーンを順番に並べ、ストーリーとして繋ぎ合わせます。

ストーリーボード作成のポイント

  • シンプルで分かりやすく: 詳細な描写よりも、重要な要素をシンプルに表現することを心がけましょう。
  • ユーザーの視点に立つ: 常にユーザーの気持ちや行動を想像しながら作成しましょう。
  • フィードバックを積極的に得る: 作成したストーリーボードを関係者に見せて、意見交換を行いましょう。

まとめ

ストーリーボードは、アイデアを深堀りし、ユーザー視点でサービスやプロダクトをデザインするための強力なツールです。

Qualitegでは、ストーリーボードをはじめとする様々なUXデザイン手法を活用し、ユーザーにとって本当に価値のあるサービスやプロダクトの開発を支援しています。ぜひ、ストーリーボードを活用して、あなたのアイデアを形にしてみてください。

Qualitegでは新規事業開発コンサルティングや人財育成研修以外にプロト開発も行っておりますので、ご相談いただけますと幸いです。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

Read more

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング