[AI新規事業創出]Qualitegが考える、質の良いアイディア創出のための3つのポイント

新規事業のコンサルティングの中で多くのクライアントから「質の良いアイディアの出し方」についてご質問をいただきます。Qualitegは長年の経験から、要件定義、業界情報の収集、効果的なファシリテーションを重要視しています。これによりアイディア創出の質が向上し、ブレスト時の空振りを防ぐことが可能になります。

[AI新規事業創出]Qualitegが考える、質の良いアイディア創出のための3つのポイント

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


新規事業のコンサルティングを行う上で、一番多いご質問は

どうやったら質の良いアイディアを出せるの?

というご質問です。

Qualitegでは数多くの新規事業創出に携わってきた経験から、一つの答えを導き出しました。質の良いアイディア創出を実現するためには、新規事業の要件定義、事前の業界情報収集、質の良いアウトプットを導くファシリテーションが重要だと考えています。

Point:1 新規事業の要件定義を行う

では、新規事業の検討をしましょうといって、ブレストを始める方が非常に多いと思います。いきなりアイディア出しをするのではなく、まず初めに、会社として新規事業に必要とされている条件をクリアにすることが重要です。

クライアントの皆様でもすぐにアイディア出しを期待されて焦ってしまわれる方が非常に多いのですが、その新規事業を行う上で、何が求められ、何を価値として提供する必要があるのかを整理しておかないと、後で多くの企画案を出しても空振りとなり、やり直しになるケースが多いです。

スポーツでいうなら、例えば球技をやろうと思っているけど、野球なのか、サッカーなのか、バレーボールなのかを決めてから、スタートしないでみんなでボールを触っているような状態の方が多いです。

man playing soccer game on field

球技をする際に、ルールが決まらず、ゴールも見えないのにスタートしますか?新規事業もスポーツと同じです!まずは、何がゴールなのかを明確にし、ルールを定義する必要があります。本当にこれが一番重要ですが、気が付かれてないクライアントが非常に多いのも現状です。

Point:2 事前に多くのインプットを行う

まだ、2つめに重要なことは、アイディア(=アウトプット)を出すために、まず業界・他社事例情報収集(=インプット)を行う必要があるということを認識してください。

アイディアを出そうと思っても、そのアイディアに即した情報や事例などを理解していないとそれを超えるものは出せません。まず初めに近接領域や競合の情報を徹底的に洗い出し、分析して、理解してからスタートすることが必要です。

man standing in front of people sitting beside table with laptop computers

事前のインプット情報がないまま、ブレストを始めてもそれらは根拠のない妄想から出たアイディアであまり付加価値のある議論ができず、時間ばかりを消化してしまいます。

せっかく皆さんで集まってこれから新しいことを始めようと思われているのであれば、その時間を有益なものにするため、まずは事前の情報収集をお勧めいたします。

同質化が進む市場環境で競争優位を築くには、独自の価値創造が不可欠です。株式会社Qualitegの Innovation-Crossは、企業の競争優位性を共創によって強化するプログラム。現状分析と競合調査を通じて差別化の機会を特定し、「自社だけでは実現困難」な独自価値の創出戦略を策定します。アイデアワークショップで社内の創造性を引き出しながら、オープンイノベーションやパートナー開拓で外部の革新的リソースを活用。

最先端AI技術の導入支援も含め、経験豊富な専門コンサルタントが、社内外の知恵を融合させた独自の競争優位性構築を導きます。模倣困難な価値創造によって、市場での圧倒的なポジションを確立—それが私たちの共創アプローチです。

Point:3 質の良いアウトプットを導くファシリテーション

部内で新規事業のブレストをしているときに、圧倒的に多いのが、リーダーの方がファシリテーションをするケースが多いようです。

その場合、メンバーの方がリーダーの方に忖度してなかなかご自身の思いを伝えることができないというケースや、こんなことを言って間違えてる、おかしいと上司に思われたらどうしようと不安になり、意見が出せないというお話をよく聞きます。

また、リーダーの方もご自身が新規事業の専門家ではないため、どのようにファシリテーションを進めていくべきなのか、また、自分で意見を言うと公平性がないのではと不安になる方が多いと聞きます。

私たちの長年の経験から、新規事業創出においては、新規事業開発経験豊富なファシリテーターによる、アウトプットまでの導きが必要だと考えています。

例えば、そのアイディアは他社が既にやっているので、自社のこのアセットを使ってこのようにアレンジしたら強みが出せる、ですとか、アイディアはいいけれど、現在の技術では実現不可能ではないか、現状の日本の法規制として適用できない可能性があるのではなど、その場で出たアイディアに対して実現可能性の視点でアドバイスを行うことが可能です。

また、その場で出たアイディアに対して、自社が参入すべき意義を付け加えて(=アイディアに更なる付加価値を付け加えて)昇華させるな、質の高いファシリテーションを実現することが可能です。

質の高い新規事業創出のため、ぜひご相談ください

その場で出たアイディアについて、他社に負けない差異化を加えて、自社がやる意義、市場参入時の勝ち筋までを取り入れて、アイディアを昇華させることは、非常に重要ではありますが、経験がないとなかなかここまでアレンジさせるのは難しく、職人芸の領域でもあります。

プロのファシリテーションだけではなく、ゴール設定や情報収集も経験者でないとなかなかターゲットにあったものを導き出せないケースが多いと思います。ゴール設定のコンサルティングや市場調査なども含めまして、当社にて対応可能ですのでご相談いただければと存じます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部