[AI新規事業創出]Qualitegが考える、質の良いアイディア創出のための3つのポイント

新規事業のコンサルティングの中で多くのクライアントから「質の良いアイディアの出し方」についてご質問をいただきます。Qualitegは長年の経験から、要件定義、業界情報の収集、効果的なファシリテーションを重要視しています。これによりアイディア創出の質が向上し、ブレスト時の空振りを防ぐことが可能になります。

[AI新規事業創出]Qualitegが考える、質の良いアイディア創出のための3つのポイント

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


新規事業のコンサルティングを行う上で、一番多いご質問は

どうやったら質の良いアイディアを出せるの?

というご質問です。

Qualitegでは数多くの新規事業創出に携わってきた経験から、一つの答えを導き出しました。質の良いアイディア創出を実現するためには、新規事業の要件定義、事前の業界情報収集、質の良いアウトプットを導くファシリテーションが重要だと考えています。

Point:1 新規事業の要件定義を行う

では、新規事業の検討をしましょうといって、ブレストを始める方が非常に多いと思います。いきなりアイディア出しをするのではなく、まず初めに、会社として新規事業に必要とされている条件をクリアにすることが重要です。

クライアントの皆様でもすぐにアイディア出しを期待されて焦ってしまわれる方が非常に多いのですが、その新規事業を行う上で、何が求められ、何を価値として提供する必要があるのかを整理しておかないと、後で多くの企画案を出しても空振りとなり、やり直しになるケースが多いです。

スポーツでいうなら、例えば球技をやろうと思っているけど、野球なのか、サッカーなのか、バレーボールなのかを決めてから、スタートしないでみんなでボールを触っているような状態の方が多いです。

man playing soccer game on field

球技をする際に、ルールが決まらず、ゴールも見えないのにスタートしますか?新規事業もスポーツと同じです!まずは、何がゴールなのかを明確にし、ルールを定義する必要があります。本当にこれが一番重要ですが、気が付かれてないクライアントが非常に多いのも現状です。

Point:2 事前に多くのインプットを行う

まだ、2つめに重要なことは、アイディア(=アウトプット)を出すために、まず業界・他社事例情報収集(=インプット)を行う必要があるということを認識してください。

アイディアを出そうと思っても、そのアイディアに即した情報や事例などを理解していないとそれを超えるものは出せません。まず初めに近接領域や競合の情報を徹底的に洗い出し、分析して、理解してからスタートすることが必要です。

man standing in front of people sitting beside table with laptop computers

事前のインプット情報がないまま、ブレストを始めてもそれらは根拠のない妄想から出たアイディアであまり付加価値のある議論ができず、時間ばかりを消化してしまいます。

せっかく皆さんで集まってこれから新しいことを始めようと思われているのであれば、その時間を有益なものにするため、まずは事前の情報収集をお勧めいたします。

同質化が進む市場環境で競争優位を築くには、独自の価値創造が不可欠です。株式会社Qualitegの Innovation-Crossは、企業の競争優位性を共創によって強化するプログラム。現状分析と競合調査を通じて差別化の機会を特定し、「自社だけでは実現困難」な独自価値の創出戦略を策定します。アイデアワークショップで社内の創造性を引き出しながら、オープンイノベーションやパートナー開拓で外部の革新的リソースを活用。

最先端AI技術の導入支援も含め、経験豊富な専門コンサルタントが、社内外の知恵を融合させた独自の競争優位性構築を導きます。模倣困難な価値創造によって、市場での圧倒的なポジションを確立—それが私たちの共創アプローチです。

Point:3 質の良いアウトプットを導くファシリテーション

部内で新規事業のブレストをしているときに、圧倒的に多いのが、リーダーの方がファシリテーションをするケースが多いようです。

その場合、メンバーの方がリーダーの方に忖度してなかなかご自身の思いを伝えることができないというケースや、こんなことを言って間違えてる、おかしいと上司に思われたらどうしようと不安になり、意見が出せないというお話をよく聞きます。

また、リーダーの方もご自身が新規事業の専門家ではないため、どのようにファシリテーションを進めていくべきなのか、また、自分で意見を言うと公平性がないのではと不安になる方が多いと聞きます。

私たちの長年の経験から、新規事業創出においては、新規事業開発経験豊富なファシリテーターによる、アウトプットまでの導きが必要だと考えています。

例えば、そのアイディアは他社が既にやっているので、自社のこのアセットを使ってこのようにアレンジしたら強みが出せる、ですとか、アイディアはいいけれど、現在の技術では実現不可能ではないか、現状の日本の法規制として適用できない可能性があるのではなど、その場で出たアイディアに対して実現可能性の視点でアドバイスを行うことが可能です。

また、その場で出たアイディアに対して、自社が参入すべき意義を付け加えて(=アイディアに更なる付加価値を付け加えて)昇華させるな、質の高いファシリテーションを実現することが可能です。

質の高い新規事業創出のため、ぜひご相談ください

その場で出たアイディアについて、他社に負けない差異化を加えて、自社がやる意義、市場参入時の勝ち筋までを取り入れて、アイディアを昇華させることは、非常に重要ではありますが、経験がないとなかなかここまでアレンジさせるのは難しく、職人芸の領域でもあります。

プロのファシリテーションだけではなく、ゴール設定や情報収集も経験者でないとなかなかターゲットにあったものを導き出せないケースが多いと思います。ゴール設定のコンサルティングや市場調査なども含めまして、当社にて対応可能ですのでご相談いただければと存じます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部