逐次生成されるトークンのバッファリング

逐次生成されるトークンのバッファリング

こんにちは! (株)Qualiteg プロダクト開発部 です!

今日は、推論シーンでよくある、トークン細切れ問題に対処する方法をご紹介します。

ストリーミングチャットで使用する逐次生成のとき、文章は1トークンずつ生成されますが、1トークンは”単語単位”でもなければ”1文字”単位でもなく、学習時使われていたトークナイザーの処理に依存します。

一般的には 形態素解析→サブワード→語彙リスト構築 を行いますが、このとき、後で文章生成するときに重要なタグ、たとえば "<NL>" というタグが重要な意味をもつにもかかわらず、細切れにされてトークナイズされてしまうことがあります。たとえば、 "<" "N" "L>" のように粉砕されてしまうようなパターンです。

(これを避ける方法はあるのですが、今回は、学習済のモデルをあからじめ与えられた状態でどうするか、を考えます)

こういうパターンが発生してしまったとき逐次生成で "<NL>" を認識しユーザーにチャットUIでレスポンスするときに "<" "N" という生成過程を見せないためのテクニックのご紹介となります。

最終的に以下のような文章が生成されるとき

"Hello there!<NL>my name is tokflow."

逐次生成だと以下のようなるとします
(実際はここまでひどいトークナイズはありえ無いですが)


"He"
"Hello"
"Hello "
"Hello t"
"Hello th"
"Hello there"
"Hello there!<"
"Hello there!<N"
"Hello there!<NL>m"
"Hello there!<NL>my "
"Hello there!<NL>my nam"
"Hello there!<NL>my name"
"Hello there!<NL>my name "
"Hello there!<NL>my name is"
"Hello there!<NL>my name is tokfl"
"Hello there!<NL>my name is tokflow."

ここで注目すべきポイントは "<NL>" が "<" "N" "L>m" と分割されてしまっている点です。

ユーザー側に生成結果をみせるとき "<NL>" は改行を意味する特殊タグだとすると、 "<" や "N" の時点では、まだ特殊タグなのか文章本体なのか見分けがつきません。そのため、ゆるい処理をしているストリーミングチャットUIだと、そのまま"<" や "N" を表示してしまいます。

これを避けるためには、 "<" や "N" の登場時点ではまだUIに出力せず、 "<NL>" まで確定したあと、それを改行として出力する、という処理が必要になります。
これを私たちはトークンのバッファリングと呼んでいます。

Qualiteg ではこの トークンのバッファリング 処理をしてくれる機能を Python ライブラリとしてリリースしていますので、ここでその使い方をご説明いたします。

当ライブラリは、 TokFlow と呼び、大規模言語モデルにより逐次的に生成されるトークンをバッファリングし、必要な置換処理を行いながら出力するユーティリティとなります。

下のように小さな かけら のようになった文章の断片=トークンを逐次入力したとき、置換が必要な文字列を順次置換しながら出力することができます。

このとき、トークンのバッファリングして遅延出力を行うことで、置換前のトークンは出力しないようにできます。

["He","llo"," ","t","h","ere","!<","N","L>m","y ","nam","e"," ","is"," tokfl","ow.","<","N","L>N","ice"," to ","me","et you."]

↑の例は、 <NL> の出現を検知し \n に置換しながら出力している様子です。

当ライブラリは、

  • 置換条件として、好きな文字列を置換対象に指定可能
  • 複数の置換条件を指定可能

です

TokFlow のインストール方法

pip install tokflow

使い方/サンプルコード

import time
from tokflow import TokFlow

TOKEN_GENERATOR_MOCK = ["He", "llo", " ", "t", "h", "ere", "!<", "N", "L>m", "y ", "nam", "e", " ", "is", " tokfl", "ow.",
                  "<", "N", "L>N", "ice", " to ", "me", "et you."]

# "<NL>" を "\n" に置換する。 "<NL>" は検索対象文字列。 "n" は置換先文字列
# 置換条件は複数指定可能。
tokf = TokFlow([("<NL>", "\n")])

for input_token in TOKEN_GENERATOR_MOCK: 
    # トークン(文章のかけらとなる1,2文字程度の文字列)を順次入力していく。トークンは内部でバッファリングされる。
    output_token = tokf.put(input_token)

    # output_token に今出力可能な出力トークンが出力される。
    # トークンのバッファリング中に検索対象文字列が出現する可能性がある場合は
    # 出力トーンは空文字となる。
    print(f"{output_token}", end="", flush=True)

    # 逐次生成されることを目視するため、ウェイトをはさむ
    time.sleep(0.3)


# トークンの入力が終わったら、最後に flush して残っているバッファを出力し切る
print(f"{tokf.flush()}", end="", flush=True)

生成オプション

put メソッドには put(text,opts) のように オプションパラメータ opts を指定することが可能です

opts は {"in_type":"spot","out_type:"spot" } のように入力の形式と出力の形式を指定することが可能です。

以下のように挙動します。

in_type out_type Description
spot spot トークンを put メソッドに逐次送り、生成分のみ都度出力するモード。
spot full トークンを put メソッドに逐次送り、フルセンテンスを出力するモード。
full spot フルセンテンスを一度に put メソッドに送り、生成分のみ都度出力するモード。
full full フルセンテンスを一度に put メソッドに送り、フルセンテンスを出力するモード。

注意点:

  • flush メソッドを呼び出す前に全ての文字列を put メソッドに送る必要があります。特に full モードでは、全ての入力文字列を一度に送ります。
  • 出力のタイプ (out_type) が full の場合、最終的な結果を取得するためには flush メソッドを呼び出す必要があります。
  • それぞれのモードで一貫性を保つためには、put メソッドの呼び出しパターンと flush メソッドの使用を適切に組み合わせることが重要です。

コード例

condition = {"in_type": "full", "out_type": "full"} のようにルールを指定し、 put および flush の引数に condition を指定します。

    tokf = TokFlow([("<NL>", "\n")])

    condition = {"in_type": "full", "out_type": "full"}
    prev_len = 0
    for input_token_base in get_example_texts():
        output_sentence = tokf.put(input_token_base, condition)

        print(f"output_sentence:{output_sentence}")

        if prev_len > len(output_sentence):
            raise ValueError("Length error")

        if "<NL>" in output_sentence:
            raise Exception("Failure Must be converted str found.")

        prev_len = len(output_sentence)

    output_sentence = tokf.flush(condition)

停止文字列を検出して文章生成を停止する SentenceStopクラス

SentenceStopクラスは、特定のキーワードを検出し、そのキーワードが見つかった時点でテキスト生成を停止するためのクラスです。テキストは1文字ずつ入力されるシチュエーションを想定しています。

主な機能

  • 特定のキーワードの検出: 文字列内の特定のキーワードを検出します。検出したキーワードは停止文字列として扱われます。
  • テキスト生成の停止: 検出した停止文字列の位置でテキスト生成を停止します。具体的には、停止文字列が検出された時点でのテキストを返します。
  • リアルタイム処理: 文字列が1文字ずつ入力されるシチュエーションを想定しており、リアルタイムでの処理が可能です。

使用方法

初期化時には停止するためのキーワードを指定します。その後、putメソッドで1文字ずつ入力を行い、停止文字列が見つかった場合にはその時点でのテキストを返します。全ての入力が終わった場合には、flushメソッドを用いて残りのテキストを出力します。

put メソッドには put(text,opts) のように オプションパラメータ opts を指定することが可能です

opts は {"in_type":"spot","out_type:"spot","skip_existing_stop_str":True } の形式をとります。

in_type と out_type について

以下のように挙動します。

in_type out_type Description
spot spot トークンを put メソッドに逐次送り、生成分のみ都度出力するモード。
spot full トークンを put メソッドに逐次送り、フルセンテンスを出力するモード。
full spot フルセンテンスを一度に put メソッドに送り、生成分のみ都度出力するモード。
full full フルセンテンスを一度に put メソッドに送り、フルセンテンスを出力するモード。

skip_existing_stop_str について

skip_existing_stop_str:True にした場合、
初回の put 時に指定した text に、停止文字列が含まれていた場合でも、そこで停止処理は発生させない。

サンプルその1

import sys

sys.path.append('../')

import time
from tokflow import SentenceStop

"""
ストリーミングされるセンテンスを指定した停止文字列 "<NL>" を検出した段階で停止させる
"""

FULL_STREAM_TEXTS = texts = [
    'は',  #
    'はい',  #
    'はい、',  #
    'はい、こちら',  #
    'はい、こちらを',  #
    'はい、こちらをお',  #
    'はい、こちらをお勧め',  #
    'はい、こちらをお勧めします',  #
    'はい、こちらをお勧めします。',  #
    'はい、こちらをお勧めします。<',  #
    'はい、こちらをお勧めします。<N',  #
    'はい、こちらをお勧めします。<NL',  #
    'はい、こちらをお勧めします。<NL>',  #
    'はい、こちらをお勧めします。<NL><',  #
    'はい、こちらをお勧めします。<NL><N',  #
    'はい、こちらをお勧めします。<NL><NL',  #
    'はい、こちらをお勧めします。<NL><NL>',  #
    'はい、こちらをお勧めします。<NL><NL>「',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ公',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ公像',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ公像」',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ公像」は',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ公像」は、',  #
    'はい、こちらをお勧めします。<NL><NL>「ハチ公像」は、最も有名な',  #
]

sens = SentenceStop(["<NL>"])

condition = {"in_type": "full", "out_type": "full"}

for input_token_base in FULL_STREAM_TEXTS:

    out = sens.put(input_token_base, condition)

    text = out.get("text")  # 出力すべきテキスト
    stop_str_found = out.get("stop_str_found")  # 停止文字列が検出された か否か
    possible = out.get("possible")  # 停止文字列を検出しかかっている か否か
    stop_str = out.get("stop_str")  # 停止文字列(複数の停止文字列を指定していた場合、どの停止文字列が検出されたのか)

    print(f"text:'{text}' possible:{possible} stop_str_found:{stop_str_found} stop_str:{stop_str}")
    if stop_str_found:
        # 停止文字列が検出された場合、処理を停止する
        break
    time.sleep(0.01)

if not stop_str_found:
    # 最後までいっても、停止文字列が検出されなかった場合
    # ペンディング中のテキストを出力しきる
    # (停止文字列が検出された場合は、停止文字列の直前までの文字列が出力されるためflushは不要)
    print(f"flush:{sens.flush(condition)}", end="", flush=True)

<NL> を検出した時点で、stop_str_found フラグが True となり、 はい、こちらをお勧めします。 で文章生成を停止することができる。

サンプルその2 停止文字列を含む場合

以下のように condition = {"in_type": "full", "out_type": "full", "skip_existing_stop_str": True}
"skip_existing_stop_str": True} を指定している場合、初回に入力するテキスト はい、<NL>こちらを には停止文字列
<NL> を含んでいるが、初回テキストにある<NL> は停止文字列と扱わずスキップする。

import sys

sys.path.append('../')

import time
from tokflow import SentenceStop

"""
既に停止文字列 "<NL>"が存在しているパートから開始された場合、
既存分はスキップして、次以降でストリーミングされるセンテンスを指定した停止文字列 "<NL>" を検出した段階で停止させる
"""

FULL_STREAM_TEXTS = texts = [
    'はい、<NL>こちらを',  #
    'はい、<NL>こちらをお',  #
    'はい、<NL>こちらをお勧',  #
    'はい、<NL>こちらをお勧め',  #
    'はい、<NL>こちらをお勧めし',  #
    'はい、<NL>こちらをお勧めしま',  #
    'はい、<NL>こちらをお勧めします',  #
    'はい、<NL>こちらをお勧めします。',  #
    'はい、<NL>こちらをお勧めします。<',  #
    'はい、<NL>こちらをお勧めします。<N',  #
    'はい、<NL>こちらをお勧めします。<NL',  #
    'はい、<NL>こちらをお勧めします。<NL>',  #
    'はい、<NL>こちらをお勧めします。<NL>「',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ公',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ公像',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ公像」',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ公像」は',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ公像」は、',  #
    'はい、<NL>こちらをお勧めします。<NL>「ハチ公像」は、最も有名な',  #
]

sens = SentenceStop(["<NL>"])

condition = {"in_type": "full", "out_type": "full", "skip_existing_stop_str": True}

for input_token_base in FULL_STREAM_TEXTS:

    out = sens.put(input_token_base, condition)

    text = out.get("text")  # 出力すべきテキスト
    stop_str_found = out.get("stop_str_found")  # 停止文字列が検出された か否か
    possible = out.get("possible")  # 停止文字列を検出しかかっている か否か
    stop_str = out.get("stop_str")  # 停止文字列(複数の停止文字列を指定していた場合、どの停止文字列が検出されたのか)

    print(f"text:'{text}' possible:{possible} stop_str_found:{stop_str_found} stop_str:{stop_str}")
    if stop_str_found:
        # 停止文字列が検出された場合、処理を停止する
        break
    time.sleep(0.01)

if not stop_str_found:
    # 最後までいっても、停止文字列が検出されなかった場合
    # ペンディング中のテキストを出力しきる
    # (停止文字列が検出された場合は、停止文字列の直前までの文字列が出力されるためflushは不要)
    print(f"flush:{sens.flush(condition)}", end="", flush=True)

ストリーム置換処理について

逐次的に出現するトークン(文字列の断片)を順次読み込み、
読み込んだトークンは、これまで読み込んだトークンと結合します。

結合されたトークンのことをトークンバッファと呼びます。

この処理が順次行われる際に、トークンバッファ内にあらかじめ指定された文字列(以降、「検索対象文字列」と呼びます)が出現した場合、その文字列を別の文字列(以降、「置換先文字列」と呼びます)に置換します。

トークンは逐次的に読み込まれるため、途中で検索対象文字列とは無関係の文字列や検索対象文字列の一部がトークンバッファに蓄積されていきます。検索対象文字列になり得ない順序でトークンバッファが構成されたと判断された瞬間に、トークンバッファはメソッドの戻り値として返却されます。

一方で、検索対象文字列になり得る順序でトークンバッファが構成されている場合は、検索対象文字列が出現するか、検索対象文字列になりえないと判断されるまで、戻り値は空文字となります。

このような方法により、検索対象文字列が出現するまでバッファリングを行い、逐次トークンのほとんどをそのまま表示させることができます。必要に応じて置換を行い、表示を遅らせることが可能です。これによって、ストリーム処理を効率的に行うことができます。


Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部