推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう

推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう
Photo by Ashkan Forouzani / Unsplash

PyTorchのテンソル操作最適化: 警告メッセージの理解と解決

こんにちは!

Qualiteg プロダクト開発部です。

PyTorch 1.13にて、次のような警告メッセージに遭遇しました

UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).

この記事では、この警告の意味を解説し、修正方針についてかきたいとおもいます。

torch.tensor() よりも .clone().detach() のほうがおすすめなのか

それは、PyTorchがテンソルと自動微分(オートグラッド)をどのように扱うかに関係があります。

torch.tensor() をつかうと「勾配計算=自動微分どうするねん」っていう意思表示がハッキリしないんです。

一方clone().detach()は「勾配配計算しないよ」をあらわし、clone().detach().requires_grad_(True)は「勾配計算有効」をあらわすので、コードから意図がよみとれる&明示的に指定できる、のがポイントです。

clone().detach()では、元のテンソルとメモリを共有せず、計算グラフから切り離された新しいテンソルが作成されます。これにより、特に勾配や誤差逆伝播を扱う際に、予期せぬ動作を防ぐことができるというわけです。

推論で使うときはどう書けばいい?

結論からいうと、推論時には sourceTensor.clone().detach() をつかいましょう。

その理由は以下のとおりです

  1. 計算効率:
    推論時には通常、勾配計算は不要です。detach() を使うことで、テンソルを計算グラフから切り離し、不要な勾配計算を防ぎます。これにより、メモリ使用量が減少し、計算速度が向上します。
  2. メモリ管理
    clone() は新しいメモリ領域にデータをコピーします。これにより、元のテンソルに影響を与えることなく、安全に操作を行えます。
  3. 意図しない変更の防止
    detach() を使用することで、誤って勾配計算を行ってしまうリスクを減らせます。これは特に大規模なモデルや複雑なアーキテクチャで重要です。
  4. モデルの固定
    推論時には当然モデルのパラメータを更新したくないのでdetach() を使うことで、誤ってモデルが更新されることを防げます。

チェインしてるメソッドの詳細説明

  1. clone() メソッド:
    • 新しいテンソルを作成し、元のテンソルのデータをコピーします。
    • これにより、元のデータに影響を与えることなく安全に操作できます。
  2. detach() メソッド:
    • テンソルを現在の計算グラフから切り離します。
    • 勾配計算が不要な場合(例:推論時)に特に有用です。

まとめ

  • sourceTensor.tensor() でコピーするのはコンテクストがあいまいなので使わないようにしましょう。
  • 推論時は clone().detach() を使用します。勾配計算が不要なため、メモリ使用量を減らし、計算速度を向上させます。
  • 学習時は 勾配計算が必要な場合は、clone().detach().requires_grad_(True) を使用します。これにより、新しいテンソルで勾配計算が可能になります。

Read more

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部