推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう

推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう
Photo by Ashkan Forouzani / Unsplash

PyTorchのテンソル操作最適化: 警告メッセージの理解と解決

こんにちは!

Qualiteg プロダクト開発部です。

PyTorch 1.13にて、次のような警告メッセージに遭遇しました

UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).

この記事では、この警告の意味を解説し、修正方針についてかきたいとおもいます。

torch.tensor() よりも .clone().detach() のほうがおすすめなのか

それは、PyTorchがテンソルと自動微分(オートグラッド)をどのように扱うかに関係があります。

torch.tensor() をつかうと「勾配計算=自動微分どうするねん」っていう意思表示がハッキリしないんです。

一方clone().detach()は「勾配配計算しないよ」をあらわし、clone().detach().requires_grad_(True)は「勾配計算有効」をあらわすので、コードから意図がよみとれる&明示的に指定できる、のがポイントです。

clone().detach()では、元のテンソルとメモリを共有せず、計算グラフから切り離された新しいテンソルが作成されます。これにより、特に勾配や誤差逆伝播を扱う際に、予期せぬ動作を防ぐことができるというわけです。

推論で使うときはどう書けばいい?

結論からいうと、推論時には sourceTensor.clone().detach() をつかいましょう。

その理由は以下のとおりです

  1. 計算効率:
    推論時には通常、勾配計算は不要です。detach() を使うことで、テンソルを計算グラフから切り離し、不要な勾配計算を防ぎます。これにより、メモリ使用量が減少し、計算速度が向上します。
  2. メモリ管理
    clone() は新しいメモリ領域にデータをコピーします。これにより、元のテンソルに影響を与えることなく、安全に操作を行えます。
  3. 意図しない変更の防止
    detach() を使用することで、誤って勾配計算を行ってしまうリスクを減らせます。これは特に大規模なモデルや複雑なアーキテクチャで重要です。
  4. モデルの固定
    推論時には当然モデルのパラメータを更新したくないのでdetach() を使うことで、誤ってモデルが更新されることを防げます。

チェインしてるメソッドの詳細説明

  1. clone() メソッド:
    • 新しいテンソルを作成し、元のテンソルのデータをコピーします。
    • これにより、元のデータに影響を与えることなく安全に操作できます。
  2. detach() メソッド:
    • テンソルを現在の計算グラフから切り離します。
    • 勾配計算が不要な場合(例:推論時)に特に有用です。

まとめ

  • sourceTensor.tensor() でコピーするのはコンテクストがあいまいなので使わないようにしましょう。
  • 推論時は clone().detach() を使用します。勾配計算が不要なため、メモリ使用量を減らし、計算速度を向上させます。
  • 学習時は 勾配計算が必要な場合は、clone().detach().requires_grad_(True) を使用します。これにより、新しいテンソルで勾配計算が可能になります。

Read more

使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

こんにちは、株式会社Qualiteg コンサルティング部門です。 昨今、生成AIの急速な進化により、ソフトウェア開発の在り方が根本から変わりつつあります。2024年にはClaude、GPT-4、Geminiなどの大規模言語モデルがコード生成能力を飛躍的に向上させ、GitHub CopilotやCursor、Windsurf等の開発支援ツールが実際の開発現場で広く活用されるようになりました。さらに、Devin、OpenAI Canvas、Anthropic Claude Codingといった、より高度な自律的コーディング機能を持つAIエージェントも登場しています。 このような技術革新を背景に、当部門では今後のソフトウェア産業の構造変化について詳細な分析を行いました。本シリーズでは、特に注目すべき変化として、従来1000人月規模を要していた企業向けSaaSプラットフォームや、基幹システムが、AIエージェントを効果的に活用することで、わずか2-3名のチームが数日から数週間で実装可能になるという、開発生産性の劇的な向上について考察してまいります。 これは単なる効率化ではなく、ソフトウェア

By Qualiteg コンサルティング
NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング