推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう

推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう
Photo by Ashkan Forouzani / Unsplash

PyTorchのテンソル操作最適化: 警告メッセージの理解と解決

こんにちは!

Qualiteg プロダクト開発部です。

PyTorch 1.13にて、次のような警告メッセージに遭遇しました

UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).

この記事では、この警告の意味を解説し、修正方針についてかきたいとおもいます。

torch.tensor() よりも .clone().detach() のほうがおすすめなのか

それは、PyTorchがテンソルと自動微分(オートグラッド)をどのように扱うかに関係があります。

torch.tensor() をつかうと「勾配計算=自動微分どうするねん」っていう意思表示がハッキリしないんです。

一方clone().detach()は「勾配配計算しないよ」をあらわし、clone().detach().requires_grad_(True)は「勾配計算有効」をあらわすので、コードから意図がよみとれる&明示的に指定できる、のがポイントです。

clone().detach()では、元のテンソルとメモリを共有せず、計算グラフから切り離された新しいテンソルが作成されます。これにより、特に勾配や誤差逆伝播を扱う際に、予期せぬ動作を防ぐことができるというわけです。

推論で使うときはどう書けばいい?

結論からいうと、推論時には sourceTensor.clone().detach() をつかいましょう。

その理由は以下のとおりです

  1. 計算効率:
    推論時には通常、勾配計算は不要です。detach() を使うことで、テンソルを計算グラフから切り離し、不要な勾配計算を防ぎます。これにより、メモリ使用量が減少し、計算速度が向上します。
  2. メモリ管理
    clone() は新しいメモリ領域にデータをコピーします。これにより、元のテンソルに影響を与えることなく、安全に操作を行えます。
  3. 意図しない変更の防止
    detach() を使用することで、誤って勾配計算を行ってしまうリスクを減らせます。これは特に大規模なモデルや複雑なアーキテクチャで重要です。
  4. モデルの固定
    推論時には当然モデルのパラメータを更新したくないのでdetach() を使うことで、誤ってモデルが更新されることを防げます。

チェインしてるメソッドの詳細説明

  1. clone() メソッド:
    • 新しいテンソルを作成し、元のテンソルのデータをコピーします。
    • これにより、元のデータに影響を与えることなく安全に操作できます。
  2. detach() メソッド:
    • テンソルを現在の計算グラフから切り離します。
    • 勾配計算が不要な場合(例:推論時)に特に有用です。

まとめ

  • sourceTensor.tensor() でコピーするのはコンテクストがあいまいなので使わないようにしましょう。
  • 推論時は clone().detach() を使用します。勾配計算が不要なため、メモリ使用量を減らし、計算速度を向上させます。
  • 学習時は 勾配計算が必要な場合は、clone().detach().requires_grad_(True) を使用します。これにより、新しいテンソルで勾配計算が可能になります。

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部