推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう

推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう
Photo by Ashkan Forouzani / Unsplash

PyTorchのテンソル操作最適化: 警告メッセージの理解と解決

こんにちは!

Qualiteg プロダクト開発部です。

PyTorch 1.13にて、次のような警告メッセージに遭遇しました

UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).

この記事では、この警告の意味を解説し、修正方針についてかきたいとおもいます。

torch.tensor() よりも .clone().detach() のほうがおすすめなのか

それは、PyTorchがテンソルと自動微分(オートグラッド)をどのように扱うかに関係があります。

torch.tensor() をつかうと「勾配計算=自動微分どうするねん」っていう意思表示がハッキリしないんです。

一方clone().detach()は「勾配配計算しないよ」をあらわし、clone().detach().requires_grad_(True)は「勾配計算有効」をあらわすので、コードから意図がよみとれる&明示的に指定できる、のがポイントです。

clone().detach()では、元のテンソルとメモリを共有せず、計算グラフから切り離された新しいテンソルが作成されます。これにより、特に勾配や誤差逆伝播を扱う際に、予期せぬ動作を防ぐことができるというわけです。

推論で使うときはどう書けばいい?

結論からいうと、推論時には sourceTensor.clone().detach() をつかいましょう。

その理由は以下のとおりです

  1. 計算効率:
    推論時には通常、勾配計算は不要です。detach() を使うことで、テンソルを計算グラフから切り離し、不要な勾配計算を防ぎます。これにより、メモリ使用量が減少し、計算速度が向上します。
  2. メモリ管理
    clone() は新しいメモリ領域にデータをコピーします。これにより、元のテンソルに影響を与えることなく、安全に操作を行えます。
  3. 意図しない変更の防止
    detach() を使用することで、誤って勾配計算を行ってしまうリスクを減らせます。これは特に大規模なモデルや複雑なアーキテクチャで重要です。
  4. モデルの固定
    推論時には当然モデルのパラメータを更新したくないのでdetach() を使うことで、誤ってモデルが更新されることを防げます。

チェインしてるメソッドの詳細説明

  1. clone() メソッド:
    • 新しいテンソルを作成し、元のテンソルのデータをコピーします。
    • これにより、元のデータに影響を与えることなく安全に操作できます。
  2. detach() メソッド:
    • テンソルを現在の計算グラフから切り離します。
    • 勾配計算が不要な場合(例:推論時)に特に有用です。

まとめ

  • sourceTensor.tensor() でコピーするのはコンテクストがあいまいなので使わないようにしましょう。
  • 推論時は clone().detach() を使用します。勾配計算が不要なため、メモリ使用量を減らし、計算速度を向上させます。
  • 学習時は 勾配計算が必要な場合は、clone().detach().requires_grad_(True) を使用します。これにより、新しいテンソルで勾配計算が可能になります。

Read more

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

こんにちは! きょうは話題のMCPについて解説いたします! はじめに 「AIが便利なのはわかるけど、自分のデータにアクセスさせたり、他のアプリと連携させたりするのは難しそう...」 このような悩みを持っている方は多いのではないでしょうか。 実際、従来のAIには大きな壁がありました。トレーニングデータの範囲でしか回答できない、リアルタイム情報にアクセスできない、外部アプリケーションを操作できないなどの制約です。 トレーニングデータの外側にあるデータをうまく検索する技術としてLLM黎明期からRAGとよばれる技術が発展してきました。 データ検索だけではなく、あらゆる分野でAIが半ば自動で連携してくれる技術が登場しました。 それが「Model Context Protocol(MCP)」です。 本記事では、AIと外部ツールの連携を革新的に簡単にするMCPについて、基本から実用まで詳しく解説します。 MCPの本質:AIのための標準インターフェース MCPは、AIモデルと外部ツール・アプリケーションの間の通信を標準化するプロトコルです。これはインターネットの世界でいえば、

By Qualiteg プロダクト開発部
GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation