[AI新規事業創出]Qualitegオリジナル、仮説探索と顧客理解で行うべき7つのステップとは

新規事業開発において、クライアントはしばしば「仮説探索」という用語に馴染みがないことが多いです。事業アイデアを考える前に、ターゲットユーザーの具体的な課題を把握する「顧客の課題仮説探索」が必要です。このプロセスを通じて、本当に市場で求められるサービスのアイディアを形成し、事業成功の可能性を高めるための戦略を立てます。

[AI新規事業創出]Qualitegオリジナル、仮説探索と顧客理解で行うべき7つのステップとは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


「仮説探索インタビューの必要性」についてクライアントにお話しすると、「仮説探索という言葉は初めて聞きました!」とおっしゃる方が非常に多いです。

新規事業開発を行う上で、どのようなサービスを考えるべきかを考える前に、「ターゲットユーザーはどのような課題を抱えているか」を確認する必要があります。それが”顧客の課題仮説探索”というフェーズです。

今日はこの”顧客の課題仮説探索”や”顧客理解”を具体的にどのような手法でやるべきかを解説させていただきますね。

そもそも”課題”とは、”誰の課題”であるべきか?

「顧客課題の仮説を探索する」というステップを踏むことをQualitegとしては強く推奨しています。というのも、新規事業アイディアを出すときに、「あ、こんなのあったらいいな~」というノリで考えてしまわれる方がほとんどなのですが、これは本当にNGです。(今読んでくださっているあなた、ドキッとしましたか?w)

実は、コンサルティング企業の上位職の方からも

新規事業のコンサルティングをする際に、クライアント企業の担当者個人の悩み、例えば日報書くのが面倒くさいとかそういう課題から始まるから、それでDX検討しても結局、小粒な案になっちゃって。コンサル案件もなんとか粘っても事業性がないから、PoCで終わって、商用化に向けた検討みたいに案件が次につながらないんだよ、どうしたらいいのかなあ。

と相談されることが多々あります。

man using MacBook

ずばりお答えしますと、その課題ってお金出してまで解決したい課題ですか、そうじゃないと商売にならないです!というケースがほとんどです。

ご自身が企画担当として「この課題、グッとくる」と思ってスタートしたとしても、あなたに私は問いたいです。

「あなたはその課題を解決するために毎月いくら確実にお支払いいただけますか?」

と。

新規事業の企画でだいたい失敗する方、有名コンサルティング企業に頼んでも、大金はたいて小粒なアイディアが出そろい、挙句の果てに商用化まで進まない方、この最初の「課題設定」に問題ありです。

企業の競争力の源泉は、その知的資産にあります。株式会社Qualitegの Innovation-Crossは、企業の知的資産を共創によって強化・拡充するプログラム。

現状分析を通じて企業の知的資産を可視化し、その価値を最大化するための戦略を策定します。アイデアワークショップで社内の暗黙知を形式知化しながら、オープンイノベーションやパートナー開拓で「自社だけでは獲得困難」な知見や技術を外部から取り込み、知的資産のポートフォリオを拡充。最先端AI技術の活用も含め、経験豊富な専門コンサルタントが、御社の知的資産と外部リソースを最適に組み合わせた革新的な価値創造を実現します。知の融合と創造を通じて、企業の持続的な競争優位性を確立します。

Qualitegが推奨する新規事業開発のメソッド

Qualitegが推奨する新規事業開発のメソッドでは、自社販路の活用こそが自社のアセット活用の第一歩と考えているため、自社サービスのターゲットユーザー向けの異なるサービスを企画しましょう”、というスタイルを提唱しています。

某ファーストフードで例えるなら「ご一緒にポテトもいかかでしょうか」でおなじみの”クロスセル”戦略です。

ターゲット顧客が同じであれば、サービス導入後も同じ営業チームが活躍できますし、ホームページもB2B用、B2C用と二つ持つ必要もありません。

two women near tables

それでは、ターゲットユーザーが決まったところで、仮説探索と顧客理解はどのように進めていくべきでしょうか。

Qualitegが提唱する7つのステップ

QualitegがこのDiscoverフェーズである、顧客課題仮説探索や、顧客理解が必要なフェーズでは、以下の7ステップで検討を進めていくべきと考えています。

  1. 顧客課題仮説探索の調査設計・準備
  2. 顧客課題仮説探索インタビュー実施
  3. 顧客課題仮説探索インタビュー結果確認・示唆出し
  4. 顧客課題仮説探索インタビューをベースにしたペルソナ策定
  5. 顧客課題仮説探索インタビューをベースにした共感マップ策定
  6. 顧客課題仮説探索インタビューをベースにした顧客課題設定
  7. 顧客課題の評価・比較

となります。一つ一つの進め方につきましてはまた、次のブログでお話しさせていただきますね。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング