[AI新規事業創出]Qualitegオリジナル、仮説探索と顧客理解で行うべき7つのステップとは

新規事業開発において、クライアントはしばしば「仮説探索」という用語に馴染みがないことが多いです。事業アイデアを考える前に、ターゲットユーザーの具体的な課題を把握する「顧客の課題仮説探索」が必要です。このプロセスを通じて、本当に市場で求められるサービスのアイディアを形成し、事業成功の可能性を高めるための戦略を立てます。

[AI新規事業創出]Qualitegオリジナル、仮説探索と顧客理解で行うべき7つのステップとは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


「仮説探索インタビューの必要性」についてクライアントにお話しすると、「仮説探索という言葉は初めて聞きました!」とおっしゃる方が非常に多いです。

新規事業開発を行う上で、どのようなサービスを考えるべきかを考える前に、「ターゲットユーザーはどのような課題を抱えているか」を確認する必要があります。それが”顧客の課題仮説探索”というフェーズです。

今日はこの”顧客の課題仮説探索”や”顧客理解”を具体的にどのような手法でやるべきかを解説させていただきますね。

そもそも”課題”とは、”誰の課題”であるべきか?

「顧客課題の仮説を探索する」というステップを踏むことをQualitegとしては強く推奨しています。というのも、新規事業アイディアを出すときに、「あ、こんなのあったらいいな~」というノリで考えてしまわれる方がほとんどなのですが、これは本当にNGです。(今読んでくださっているあなた、ドキッとしましたか?w)

実は、コンサルティング企業の上位職の方からも

新規事業のコンサルティングをする際に、クライアント企業の担当者個人の悩み、例えば日報書くのが面倒くさいとかそういう課題から始まるから、それでDX検討しても結局、小粒な案になっちゃって。コンサル案件もなんとか粘っても事業性がないから、PoCで終わって、商用化に向けた検討みたいに案件が次につながらないんだよ、どうしたらいいのかなあ。

と相談されることが多々あります。

man using MacBook

ずばりお答えしますと、その課題ってお金出してまで解決したい課題ですか、そうじゃないと商売にならないです!というケースがほとんどです。

ご自身が企画担当として「この課題、グッとくる」と思ってスタートしたとしても、あなたに私は問いたいです。

「あなたはその課題を解決するために毎月いくら確実にお支払いいただけますか?」

と。

新規事業の企画でだいたい失敗する方、有名コンサルティング企業に頼んでも、大金はたいて小粒なアイディアが出そろい、挙句の果てに商用化まで進まない方、この最初の「課題設定」に問題ありです。

企業の競争力の源泉は、その知的資産にあります。株式会社Qualitegの Innovation-Crossは、企業の知的資産を共創によって強化・拡充するプログラム。

現状分析を通じて企業の知的資産を可視化し、その価値を最大化するための戦略を策定します。アイデアワークショップで社内の暗黙知を形式知化しながら、オープンイノベーションやパートナー開拓で「自社だけでは獲得困難」な知見や技術を外部から取り込み、知的資産のポートフォリオを拡充。最先端AI技術の活用も含め、経験豊富な専門コンサルタントが、御社の知的資産と外部リソースを最適に組み合わせた革新的な価値創造を実現します。知の融合と創造を通じて、企業の持続的な競争優位性を確立します。

Qualitegが推奨する新規事業開発のメソッド

Qualitegが推奨する新規事業開発のメソッドでは、自社販路の活用こそが自社のアセット活用の第一歩と考えているため、自社サービスのターゲットユーザー向けの異なるサービスを企画しましょう”、というスタイルを提唱しています。

某ファーストフードで例えるなら「ご一緒にポテトもいかかでしょうか」でおなじみの”クロスセル”戦略です。

ターゲット顧客が同じであれば、サービス導入後も同じ営業チームが活躍できますし、ホームページもB2B用、B2C用と二つ持つ必要もありません。

two women near tables

それでは、ターゲットユーザーが決まったところで、仮説探索と顧客理解はどのように進めていくべきでしょうか。

Qualitegが提唱する7つのステップ

QualitegがこのDiscoverフェーズである、顧客課題仮説探索や、顧客理解が必要なフェーズでは、以下の7ステップで検討を進めていくべきと考えています。

  1. 顧客課題仮説探索の調査設計・準備
  2. 顧客課題仮説探索インタビュー実施
  3. 顧客課題仮説探索インタビュー結果確認・示唆出し
  4. 顧客課題仮説探索インタビューをベースにしたペルソナ策定
  5. 顧客課題仮説探索インタビューをベースにした共感マップ策定
  6. 顧客課題仮説探索インタビューをベースにした顧客課題設定
  7. 顧客課題の評価・比較

となります。一つ一つの進め方につきましてはまた、次のブログでお話しさせていただきますね。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部