[AI新規事業創出]Qualitegオリジナル、仮説探索と顧客理解で行うべき7つのステップとは

新規事業開発において、クライアントはしばしば「仮説探索」という用語に馴染みがないことが多いです。事業アイデアを考える前に、ターゲットユーザーの具体的な課題を把握する「顧客の課題仮説探索」が必要です。このプロセスを通じて、本当に市場で求められるサービスのアイディアを形成し、事業成功の可能性を高めるための戦略を立てます。

[AI新規事業創出]Qualitegオリジナル、仮説探索と顧客理解で行うべき7つのステップとは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


「仮説探索インタビューの必要性」についてクライアントにお話しすると、「仮説探索という言葉は初めて聞きました!」とおっしゃる方が非常に多いです。

新規事業開発を行う上で、どのようなサービスを考えるべきかを考える前に、「ターゲットユーザーはどのような課題を抱えているか」を確認する必要があります。それが”顧客の課題仮説探索”というフェーズです。

今日はこの”顧客の課題仮説探索”や”顧客理解”を具体的にどのような手法でやるべきかを解説させていただきますね。

そもそも”課題”とは、”誰の課題”であるべきか?

「顧客課題の仮説を探索する」というステップを踏むことをQualitegとしては強く推奨しています。というのも、新規事業アイディアを出すときに、「あ、こんなのあったらいいな~」というノリで考えてしまわれる方がほとんどなのですが、これは本当にNGです。(今読んでくださっているあなた、ドキッとしましたか?w)

実は、コンサルティング企業の上位職の方からも

新規事業のコンサルティングをする際に、クライアント企業の担当者個人の悩み、例えば日報書くのが面倒くさいとかそういう課題から始まるから、それでDX検討しても結局、小粒な案になっちゃって。コンサル案件もなんとか粘っても事業性がないから、PoCで終わって、商用化に向けた検討みたいに案件が次につながらないんだよ、どうしたらいいのかなあ。

と相談されることが多々あります。

man using MacBook

ずばりお答えしますと、その課題ってお金出してまで解決したい課題ですか、そうじゃないと商売にならないです!というケースがほとんどです。

ご自身が企画担当として「この課題、グッとくる」と思ってスタートしたとしても、あなたに私は問いたいです。

「あなたはその課題を解決するために毎月いくら確実にお支払いいただけますか?」

と。

新規事業の企画でだいたい失敗する方、有名コンサルティング企業に頼んでも、大金はたいて小粒なアイディアが出そろい、挙句の果てに商用化まで進まない方、この最初の「課題設定」に問題ありです。

企業の競争力の源泉は、その知的資産にあります。株式会社Qualitegの Innovation-Crossは、企業の知的資産を共創によって強化・拡充するプログラム。

現状分析を通じて企業の知的資産を可視化し、その価値を最大化するための戦略を策定します。アイデアワークショップで社内の暗黙知を形式知化しながら、オープンイノベーションやパートナー開拓で「自社だけでは獲得困難」な知見や技術を外部から取り込み、知的資産のポートフォリオを拡充。最先端AI技術の活用も含め、経験豊富な専門コンサルタントが、御社の知的資産と外部リソースを最適に組み合わせた革新的な価値創造を実現します。知の融合と創造を通じて、企業の持続的な競争優位性を確立します。

Qualitegが推奨する新規事業開発のメソッド

Qualitegが推奨する新規事業開発のメソッドでは、自社販路の活用こそが自社のアセット活用の第一歩と考えているため、自社サービスのターゲットユーザー向けの異なるサービスを企画しましょう”、というスタイルを提唱しています。

某ファーストフードで例えるなら「ご一緒にポテトもいかかでしょうか」でおなじみの”クロスセル”戦略です。

ターゲット顧客が同じであれば、サービス導入後も同じ営業チームが活躍できますし、ホームページもB2B用、B2C用と二つ持つ必要もありません。

two women near tables

それでは、ターゲットユーザーが決まったところで、仮説探索と顧客理解はどのように進めていくべきでしょうか。

Qualitegが提唱する7つのステップ

QualitegがこのDiscoverフェーズである、顧客課題仮説探索や、顧客理解が必要なフェーズでは、以下の7ステップで検討を進めていくべきと考えています。

  1. 顧客課題仮説探索の調査設計・準備
  2. 顧客課題仮説探索インタビュー実施
  3. 顧客課題仮説探索インタビュー結果確認・示唆出し
  4. 顧客課題仮説探索インタビューをベースにしたペルソナ策定
  5. 顧客課題仮説探索インタビューをベースにした共感マップ策定
  6. 顧客課題仮説探索インタビューをベースにした顧客課題設定
  7. 顧客課題の評価・比較

となります。一つ一つの進め方につきましてはまた、次のブログでお話しさせていただきますね。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部