[ChatStream] Web サーバー(ASGI server) の起動

[ChatStream] Web サーバー(ASGI server) の起動

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatStream 搭載した Webサーバーの起動方法について説明いたします!

uvicorn(内部起動)

ChatStreamは FastAPI/Starlette に対応しているため、 ASGI サーバーで動作させることができます。

uvicorn をコード内で定義するには以下のように実装します

def start_server():
    uvicorn.run(app, host='localhost', port=9999)


def main():
    start_server()


if __name__ == "__main__":
    main()

ソースコード全体

import torch
import uvicorn
from fastapi import FastAPI, Request
from fastersession import FasterSessionMiddleware, MemoryStore
from transformers import AutoTokenizer, AutoModelForCausalLM

from chatstream import ChatStream, ChatPromptTogetherRedPajamaINCITEChat as ChatPrompt

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

app = FastAPI()

app.add_middleware(FasterSessionMiddleware,
                   secret_key="your-session-secret-key",  # Key for cookie signature
                   store=MemoryStore(),  # Store for session saving
                   http_only=True,  # True: Cookie cannot be accessed from client-side scripts such as JavaScript
                   secure=True,  # False: For local development env. True: For production. Requires Https
                   )


@app.post("/chat_stream")
async def stream_api(request: Request):
    # handling FastAPI/Starlette's Request
    response = await chat_stream.handle_chat_stream_request(request)
    return response


@app.on_event("startup")
async def startup():
    # start request queueing system
    await chat_stream.start_queue_worker()


def start_server():
    uvicorn.run(app, host='localhost', port=9999)


def main():
    start_server()


if __name__ == "__main__":
    main()

uvicorn(外部起動)

次に uvicorn 外部起動 のパターンについてみていきましょう。

./example にある example_server_redpajama_simple.py をサーバーとして起動する場合

uvicorn example.web_server_redpajama_simple.py:app --host 0.0.0.0 --port 3000

のようになります。こちらのほうがサーバーとアプリの分離ができていて、より本番に近いアプローチとなります。

uvicornの起動オプション

https://www.uvicorn.org/settings/

ソースコード

example_server_redpajama_simple.py

import torch
import uvicorn
from fastapi import FastAPI, Request
from fastersession import FasterSessionMiddleware, MemoryStore
from transformers import AutoTokenizer, AutoModelForCausalLM

from chatstream import ChatStream, ChatPromptTogetherRedPajamaINCITEChat as ChatPrompt

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

app = FastAPI()

app.add_middleware(FasterSessionMiddleware,
                   secret_key="your-session-secret-key",  # Key for cookie signature
                   store=MemoryStore(),  # Store for session saving
                   http_only=True,  # True: Cookie cannot be accessed from client-side scripts such as JavaScript
                   secure=True,  # False: For local development env. True: For production. Requires Https
                   )


@app.post("/chat_stream")
async def stream_api(request: Request):
    # handling FastAPI/Starlette's Request
    response = await chat_stream.handle_chat_stream_request(request)
    return response


@app.on_event("startup")
async def startup():
    # start request queueing system
    await chat_stream.start_queue_worker()

gunicorn

次は gunicorn を使用する方法についてです。こちらは、本番のAPIサーバーとして、もっとも一般的なアプローチとなります。ここで起動した gunicorn を APIサーバーとして Nginx などの Webサーバーをリバースプロキシとして組み合わせることで、本番システムとして稼働させることができます。

./example にある example_server_redpajama_simple.py をサーバーとして起動する場合

gunicorn example.web_server_redpajama_simple.py:app --workers 4 --worker-class uvicorn.workers.UvicornWorker --bind 0.0.0.0:3000

(注意:Windows 環境では動作しません)

ソースコード

example_server_redpajama_simple.py

import torch

from fastapi import FastAPI, Request
from fastersession import FasterSessionMiddleware, MemoryStore
from transformers import AutoTokenizer, AutoModelForCausalLM

from chatstream import ChatStream, ChatPromptTogetherRedPajamaINCITEChat as ChatPrompt

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

app = FastAPI()

app.add_middleware(FasterSessionMiddleware,
                   secret_key="your-session-secret-key",  # Key for cookie signature
                   store=MemoryStore(),  # Store for session saving
                   http_only=True,  # True: Cookie cannot be accessed from client-side scripts such as JavaScript
                   secure=True,  # False: For local development env. True: For production. Requires Https
                   )


@app.post("/chat_stream")
async def stream_api(request: Request):
    # handling FastAPI/Starlette's Request
    response = await chat_stream.handle_chat_stream_request(request)
    return response


@app.on_event("startup")
async def startup():
    # start request queueing system
    await chat_stream.start_queue_worker()

いかがでしたでしょうか。ChatStreamが FastAPI/Starlette ベースで実装されているので本番に向けては標準的なアプローチでサーバー構築することが可能です。

ただし、商用環境を考慮しますと、通常、1つの ChatStream APIサーバーだけで運用することは稀で、1つの ChatStream API サーバーを ChatStreamノードと呼び、複数のChatStreamノードでリージョンごとのクラスターを作ります。Qualiteg では、このようなスケールアウト型の負荷対策をさせるシステム構成を推奨しております。

Read more

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部
サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング
ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース