[AI新規事業創出]LLMとは?

MicheleがAI活用のビジネスやマーケティングについて質問に答えるブログを紹介。大規模言語モデル(LLM)について説明し、ChatGPTを例に挙げてLLMのビジネス活用事例や技術的な側面を解説。さらに、専用パソコンや日本語対応モデルも紹介しています。

[AI新規事業創出]LLMとは?

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


LLMとは大規模言語モデル

LLM(Large Language Model、大規模言語モデル)とは、人間の言葉を理解し、それに基づいてテキストを生成する人工知能技術の一つです。この技術は、インターネット上の大量のテキストデータを学習して、様々な言語タスクをこなすことができるモデルを構築するものです。

ChatGPTもLLMを活用した生成AI

2022年に米国で開発されたOpenAI社のChatGPTはLLM(大規模言語モデルと呼ばれる言語生成AI)技術を活用し人間のアシスタントとして様々なタスクを代行したり、弁護士試験や医師国家試験に合格したりするなど既に平均的な人間の能力を超えていると言われており現在も秒進分歩で進化をつづけています。

ChatGPTはFortune 500企業の過半数でビジネス活用されているなど欧米中心に大きなビジネスインパクトを与えており、これに刺激され世界中で同様のLLMを作る動きが活発化されております。

LLMはコンピューターに例えるならCPU部分

LLMとは、人間のように質問に気の利いた回答をしたり、指示に従って文章を生みだしたりすることのできるAI技術で、昨今話題のChatGPTのコア技術としても使用されています。LLMはパソコンに例えるのであれば頭脳部分をつかさどるCPUに相当します。

イノベーションには常にリスクが伴います。株式会社Qualitegの Innovation-Crossは、そのリスクを最小化しながら成果を最大化する共創支援プログラム。現状分析を通じてリスク要因を可視化し、「自社だけでは管理困難」なリスクに対する戦略を策定します。アイデアワークショップや小規模な実証実験を通じて低コストで学習と検証を重ね、オープンイノベーションやパートナー開拓でリスクと投資を分散した革新創出を推進。

最先端AI技術の活用支援も含め、経験豊富な専門コンサルタントが、失敗のコストを抑えながら成功の可能性を高める共創プロセスを設計します。安全に挑戦し、確実に革新する—この両立を実現するのが、私たちのアプローチです。

CPUだけでパソコンは動く?

CPUのみではパソコンが使えないのと同様、LLMだけではユーザーが使える状態にはなりません。パソコンでは、キーボード、マウスといった入力装置、ディスプレイ、スピーカーなどの出力装置、メモリやHDDといった記憶装置、それらとCPUをつなぐマザーボードなど様々なパーツが協調して動作します。

LLMを動作させるにも、入出力や協調のための高度な仕組みが必要です。さらに、多くのユーザーが使用するためのセキュリティや堅牢性も兼ね備えることが求められます。このようにLLMを活用するには様々なソフトウェアとそれらを統合するプラットフォーム技術が必要であり、当社は商用サービス向け、LLMプラットフォーム ChatStream®(チャットストリーム)を開発・提供しています。

5.日本語対応の大規模言語モデル(例)

- matsuo-lab/weblab-10b-instruction-sft
- cyberagent/open-calm-7b
- cyberagent/open-calm-3b
- rinna/japanese-gpt-neox-3.6b-instruction-sft-v2
- rinna/bilingual-gpt-neox-4b-instruction-sft
- rinna/japanese-gpt-neox-3.6b-instruction-sft
- rinna/japanese-gpt-neox-3.6b-instruction-ppo
- stabilityai/japanese-stablelm-instruct-alpha-7b
- line-corporation/japanese-large-lm-3.6b-instruction-sft
- stockmark/gpt-neox-japanese-1.4b

6.英語対応の大規模言語モデル(例)

- meta-llama/Llama-2-7b-chat
- openlm-research/open_llama_3b_v2
- openlm-research/open_llama_7b_v2
- openlm-research/open_llama_3b
- togethercomputer/RedPajama-INCITE-Chat-3B-v1
- togethercomputer/RedPajama-INCITE-7B-Chat
- mosaicml/mpt-7b-chat
- databricks/dolly-v2-7b
- databricks/dolly-v2-3b

7.生成AI専用パソコンのご案内

当社では、プロ用GPUを搭載した、プロフェッショナル向けLLM(大規模言語モデル)専用パソコンのハイコストパフォーマンスモデル Qualiteg IntegrityPro-11600を販売中です。

必要なソフトウェアはあらかじめプリインストールされているため、電源をいれたらすぐに対話チャットWebアプリでLLMを試すことができます。もうAI実行に必要なPCパーツ構成や煩わしいソフトウェアインストールに悩まず、必要な作業にご集中いただけます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング