[AI新規事業創出]LLMとは?

MicheleがAI活用のビジネスやマーケティングについて質問に答えるブログを紹介。大規模言語モデル(LLM)について説明し、ChatGPTを例に挙げてLLMのビジネス活用事例や技術的な側面を解説。さらに、専用パソコンや日本語対応モデルも紹介しています。

[AI新規事業創出]LLMとは?

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


LLMとは大規模言語モデル

LLM(Large Language Model、大規模言語モデル)とは、人間の言葉を理解し、それに基づいてテキストを生成する人工知能技術の一つです。この技術は、インターネット上の大量のテキストデータを学習して、様々な言語タスクをこなすことができるモデルを構築するものです。

ChatGPTもLLMを活用した生成AI

2022年に米国で開発されたOpenAI社のChatGPTはLLM(大規模言語モデルと呼ばれる言語生成AI)技術を活用し人間のアシスタントとして様々なタスクを代行したり、弁護士試験や医師国家試験に合格したりするなど既に平均的な人間の能力を超えていると言われており現在も秒進分歩で進化をつづけています。

ChatGPTはFortune 500企業の過半数でビジネス活用されているなど欧米中心に大きなビジネスインパクトを与えており、これに刺激され世界中で同様のLLMを作る動きが活発化されております。

LLMはコンピューターに例えるならCPU部分

LLMとは、人間のように質問に気の利いた回答をしたり、指示に従って文章を生みだしたりすることのできるAI技術で、昨今話題のChatGPTのコア技術としても使用されています。LLMはパソコンに例えるのであれば頭脳部分をつかさどるCPUに相当します。

イノベーションには常にリスクが伴います。株式会社Qualitegの Innovation-Crossは、そのリスクを最小化しながら成果を最大化する共創支援プログラム。現状分析を通じてリスク要因を可視化し、「自社だけでは管理困難」なリスクに対する戦略を策定します。アイデアワークショップや小規模な実証実験を通じて低コストで学習と検証を重ね、オープンイノベーションやパートナー開拓でリスクと投資を分散した革新創出を推進。

最先端AI技術の活用支援も含め、経験豊富な専門コンサルタントが、失敗のコストを抑えながら成功の可能性を高める共創プロセスを設計します。安全に挑戦し、確実に革新する—この両立を実現するのが、私たちのアプローチです。

CPUだけでパソコンは動く?

CPUのみではパソコンが使えないのと同様、LLMだけではユーザーが使える状態にはなりません。パソコンでは、キーボード、マウスといった入力装置、ディスプレイ、スピーカーなどの出力装置、メモリやHDDといった記憶装置、それらとCPUをつなぐマザーボードなど様々なパーツが協調して動作します。

LLMを動作させるにも、入出力や協調のための高度な仕組みが必要です。さらに、多くのユーザーが使用するためのセキュリティや堅牢性も兼ね備えることが求められます。このようにLLMを活用するには様々なソフトウェアとそれらを統合するプラットフォーム技術が必要であり、当社は商用サービス向け、LLMプラットフォーム ChatStream®(チャットストリーム)を開発・提供しています。

5.日本語対応の大規模言語モデル(例)

- matsuo-lab/weblab-10b-instruction-sft
- cyberagent/open-calm-7b
- cyberagent/open-calm-3b
- rinna/japanese-gpt-neox-3.6b-instruction-sft-v2
- rinna/bilingual-gpt-neox-4b-instruction-sft
- rinna/japanese-gpt-neox-3.6b-instruction-sft
- rinna/japanese-gpt-neox-3.6b-instruction-ppo
- stabilityai/japanese-stablelm-instruct-alpha-7b
- line-corporation/japanese-large-lm-3.6b-instruction-sft
- stockmark/gpt-neox-japanese-1.4b

6.英語対応の大規模言語モデル(例)

- meta-llama/Llama-2-7b-chat
- openlm-research/open_llama_3b_v2
- openlm-research/open_llama_7b_v2
- openlm-research/open_llama_3b
- togethercomputer/RedPajama-INCITE-Chat-3B-v1
- togethercomputer/RedPajama-INCITE-7B-Chat
- mosaicml/mpt-7b-chat
- databricks/dolly-v2-7b
- databricks/dolly-v2-3b

7.生成AI専用パソコンのご案内

当社では、プロ用GPUを搭載した、プロフェッショナル向けLLM(大規模言語モデル)専用パソコンのハイコストパフォーマンスモデル Qualiteg IntegrityPro-11600を販売中です。

必要なソフトウェアはあらかじめプリインストールされているため、電源をいれたらすぐに対話チャットWebアプリでLLMを試すことができます。もうAI実行に必要なPCパーツ構成や煩わしいソフトウェアインストールに悩まず、必要な作業にご集中いただけます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング