[AI新規事業創出]LLMとは?

MicheleがAI活用のビジネスやマーケティングについて質問に答えるブログを紹介。大規模言語モデル(LLM)について説明し、ChatGPTを例に挙げてLLMのビジネス活用事例や技術的な側面を解説。さらに、専用パソコンや日本語対応モデルも紹介しています。

[AI新規事業創出]LLMとは?

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


LLMとは大規模言語モデル

LLM(Large Language Model、大規模言語モデル)とは、人間の言葉を理解し、それに基づいてテキストを生成する人工知能技術の一つです。この技術は、インターネット上の大量のテキストデータを学習して、様々な言語タスクをこなすことができるモデルを構築するものです。

ChatGPTもLLMを活用した生成AI

2022年に米国で開発されたOpenAI社のChatGPTはLLM(大規模言語モデルと呼ばれる言語生成AI)技術を活用し人間のアシスタントとして様々なタスクを代行したり、弁護士試験や医師国家試験に合格したりするなど既に平均的な人間の能力を超えていると言われており現在も秒進分歩で進化をつづけています。

ChatGPTはFortune 500企業の過半数でビジネス活用されているなど欧米中心に大きなビジネスインパクトを与えており、これに刺激され世界中で同様のLLMを作る動きが活発化されております。

LLMはコンピューターに例えるならCPU部分

LLMとは、人間のように質問に気の利いた回答をしたり、指示に従って文章を生みだしたりすることのできるAI技術で、昨今話題のChatGPTのコア技術としても使用されています。LLMはパソコンに例えるのであれば頭脳部分をつかさどるCPUに相当します。

イノベーションには常にリスクが伴います。株式会社Qualitegの Innovation-Crossは、そのリスクを最小化しながら成果を最大化する共創支援プログラム。現状分析を通じてリスク要因を可視化し、「自社だけでは管理困難」なリスクに対する戦略を策定します。アイデアワークショップや小規模な実証実験を通じて低コストで学習と検証を重ね、オープンイノベーションやパートナー開拓でリスクと投資を分散した革新創出を推進。

最先端AI技術の活用支援も含め、経験豊富な専門コンサルタントが、失敗のコストを抑えながら成功の可能性を高める共創プロセスを設計します。安全に挑戦し、確実に革新する—この両立を実現するのが、私たちのアプローチです。

CPUだけでパソコンは動く?

CPUのみではパソコンが使えないのと同様、LLMだけではユーザーが使える状態にはなりません。パソコンでは、キーボード、マウスといった入力装置、ディスプレイ、スピーカーなどの出力装置、メモリやHDDといった記憶装置、それらとCPUをつなぐマザーボードなど様々なパーツが協調して動作します。

LLMを動作させるにも、入出力や協調のための高度な仕組みが必要です。さらに、多くのユーザーが使用するためのセキュリティや堅牢性も兼ね備えることが求められます。このようにLLMを活用するには様々なソフトウェアとそれらを統合するプラットフォーム技術が必要であり、当社は商用サービス向け、LLMプラットフォーム ChatStream®(チャットストリーム)を開発・提供しています。

5.日本語対応の大規模言語モデル(例)

- matsuo-lab/weblab-10b-instruction-sft
- cyberagent/open-calm-7b
- cyberagent/open-calm-3b
- rinna/japanese-gpt-neox-3.6b-instruction-sft-v2
- rinna/bilingual-gpt-neox-4b-instruction-sft
- rinna/japanese-gpt-neox-3.6b-instruction-sft
- rinna/japanese-gpt-neox-3.6b-instruction-ppo
- stabilityai/japanese-stablelm-instruct-alpha-7b
- line-corporation/japanese-large-lm-3.6b-instruction-sft
- stockmark/gpt-neox-japanese-1.4b

6.英語対応の大規模言語モデル(例)

- meta-llama/Llama-2-7b-chat
- openlm-research/open_llama_3b_v2
- openlm-research/open_llama_7b_v2
- openlm-research/open_llama_3b
- togethercomputer/RedPajama-INCITE-Chat-3B-v1
- togethercomputer/RedPajama-INCITE-7B-Chat
- mosaicml/mpt-7b-chat
- databricks/dolly-v2-7b
- databricks/dolly-v2-3b

7.生成AI専用パソコンのご案内

当社では、プロ用GPUを搭載した、プロフェッショナル向けLLM(大規模言語モデル)専用パソコンのハイコストパフォーマンスモデル Qualiteg IntegrityPro-11600を販売中です。

必要なソフトウェアはあらかじめプリインストールされているため、電源をいれたらすぐに対話チャットWebアプリでLLMを試すことができます。もうAI実行に必要なPCパーツ構成や煩わしいソフトウェアインストールに悩まず、必要な作業にご集中いただけます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング