WSL2でDNS解決がうまくいかない問題と解決方法

WSL2でDNS解決がうまくいかない問題と解決方法

こんにちは!

Windows Subsystem for Linux (WSL2)は、Windows上でLinux環境を利用できる素晴らしい機能ですが、中にはDNS解決に関する問題が発生することがあります。この記事では、その症状と効果的な解決方法を紹介します。

検証環境

この記事で紹介する方法は、以下のバージョンで検証しています

WSL バージョン: 2.4.13.0
カーネル バージョン: 5.15.167.4-1
WSLg バージョン: 1.0.65
MSRDC バージョン: 1.2.5716
Direct3D バージョン: 1.611.1-81528511
DXCore バージョン: 10.0.26100.1-240331-1435.ge-release
Windows バージョン: 10.0.22631.3880

症状

以下のようなエラーメッセージが表示される場合、WSL2でのDNS解決に問題が発生している可能性が高いです:

  • コマンドラインから接続時: Could not resolve hostname ...
  • Pythonコードから接続時: [Errno -2] Name or service not known

これらのエラーは、WSL2内でDNSサーバーの設定が正しく行われていないことを示しています。

原因

WSL2は起動時に自動的に /etc/resolv.conf ファイルを生成し、Windows側のDNS設定を使用しようとします。しかし、この自動生成されるDNS設定が正しく機能しないケースがあります。上記のバージョン情報にあるように、2025年3月時点の最新WSL2(バージョン2.4.13.0)でもこの問題は完全には解決されていません。

解決方法

以下の3ステップで問題を解決できます

STEP1: WSL2が自動生成するDNS設定を無効化

WSL bashで以下のワンライナーを実行して、resolv.confが自動生成されるのを防ぎます。

注意:既存のwsl.conf があるばあいはvim等で編集してください。

sudo sh -c 'cat > /etc/wsl.conf << EOF
[network]
generateResolvConf = false
EOF'

このコマンドは、WSL2の設定ファイル /etc/wsl.conf を作成し、DNS設定の自動生成を無効にします。

STEP2: Windows側でWSLを再起動

Windows PowerShellまたはコマンドプロンプトで以下のコマンドを実行し、WSLを完全に再起動します

wsl --shutdown

STEP3: DNSサーバーを手動で設定

WSLを再度起動し、シェルで以下のコマンドを実行して、GoogleのパブリックDNSサーバーを手動で設定します

sudo sh -c 'cat > /etc/resolv.conf << EOF
nameserver 8.8.8.8
EOF'

これにより、GoogleのDNSサーバー(8.8.8.8と8.8.4.4)を使用するように設定されます。

確認方法

設定が正しく適用されたかを確認するには、以下のコマンドを実行してみてください

ping google.com

または、以下のPythonコードでの接続テスト

import socket
socket.gethostbyname('google.com')

WSLのカーネルバージョンを確認するには、以下のコマンドが使用できます

# カーネルバージョンの簡易表示
uname -r

# カーネルバージョンの詳細表示
cat /proc/version

# システム情報全体の確認(systemdが利用可能な場合)
hostnamectl

また、WindowsコマンドプロンプトまたはPowerShellからWSLのバージョン情報を確認するには

wsl --version

これらが正常に動作すれば、DNS解決の問題は解決されています。

注意点

  • この設定はWSLを再起動するたびにリセットされる可能性があります。その場合は、STEP3を再度実行する必要があります。
  • WSLのバージョンによっては動作が異なる場合があります。最新の情報については、Microsoftの公式ドキュメントを参照することをお勧めします。

まとめ

WSL2でのDNS解決問題は、自動生成されるDNS設定を無効化し、手動でDNSサーバーを設定することで解決できます。この方法は、最新のWSL2バージョンでも有効です。

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング