[AI新規事業創出]Qualitegオリジナル、事業責任者との合意形成のための新規事業方向性まとめ方

このブログでは、新規事業の事業責任者とのゴール合意形成方法を解説しています。Step1では事業のビジョンと目標を明確化し、数値目標を設定します。Step2では達成のためのロードマップとKPIを作成し、Step3では定期的なミーティングで進捗を共有し調整します。これにより、新規事業推進の体制を効果的に整えることができます。

[AI新規事業創出]Qualitegオリジナル、事業責任者との合意形成のための新規事業方向性まとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


このブログでは事業責任者と新規事業で達成すべきゴールをどのように事前に合意形成すべきかについて解説していきます。

Step1: ゴールの明確化と認識の共有

まず、初めに事業のビジョンと目標を明確に定義し、それを文書化します。パワーポイントなどでエグゼクティブサマリーとして1ページにまとめ、事業責任者と一緒に具体的な数値目標(売上、顧客数、市場シェアなど)について、それぞれのゴールが事業の成功にどのように寄与するかを議論します。

このフェーズでのポイントは目標がいかにリアリスティックで達成可能かどうかが評価されますので、自分でも達成できないような例えば1年で売上100億円達成のような大きすぎる目標は避けるようにしましょう。

初めに行ったMVV分析をもとに、自社がなぜその新規事業を行うべきか、自社のMVVの振り返りと読み解き、コンテキスト理解も踏まえたうえで新規事業を実施する必要性について説明いします。

次に説明するのは、何をもって新規事業の事業化判断を行うかの基準について議論します。前コラムで解説した定量的目標設定の内容を明確化し、具体的な数値をもって、この数値を達成するために新規事業を行うという趣旨をお伝えしましょう。

多くの企業では、イノベーションが理念としては語られても、実際の行動に結びつかないことがあります。株式会社Qualitegの Innovation-Crossは、この「言行一致のギャップ」を埋める共創支援プログラム。企業の現状と課題を徹底分析し、具体的なアクションへと落とし込む戦略を策定します。アイデアワークショップやハッカソン企画を通じて実践的な場を創出し、「自社だけでは変わりにくい」イノベーション行動を促進。

オープンイノベーションやパートナー開拓の実践を通じて、外部との協業による価値創造の体験を積み重ねます。経験豊富な専門コンサルタントが伴走し、理念から行動へ、行動から成果へという変革の流れを確実に実現。イノベーションを「語る文化」から「行動する文化」へと変革します。

Step2: ロードマップの作成

続いて必要なことは、ロードマップの作製になります。合意されたゴールを達成するための、開発スケジュール、マーケティング戦略立案などの主要なマイルストーンを設定しましょう。

それらのマイルストーンの達成判断をするための数値目標としてのKPI(重要業績評価指標)を設定することで、手戻りがない事業開発を行うことが可能です。

yellow arrow road sign

Step3: コミュニケーションと調整

最後に必要なことはコミュニケーション計画の説明です。事業責任者との定期的なミーティングを設けて、進捗状況を共有して計画の進捗度合いを報告します。

事前にコミュニケーション計画を設定することで、すべての関係者が同じ情報を持ち、例えば競合から類似サービスのリリース情報が出た場合などの、万が一変更が必要になった場合にも備えることが可能ですので、チームで共同して対応できる新規事業推進体制を作ることが可能です。

事業責任者にあらゆる観点で事前にコミットすることは、担当者にとってはハードルが高いケースもありますが、事前にコミュニケーション計画やマイルストーンを提示することで信頼感も生まれ、新規事業を推進する上で役に立つことでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング