[AI新規事業創出]Qualitegオリジナル、事業責任者との合意形成のための新規事業方向性まとめ方

このブログでは、新規事業の事業責任者とのゴール合意形成方法を解説しています。Step1では事業のビジョンと目標を明確化し、数値目標を設定します。Step2では達成のためのロードマップとKPIを作成し、Step3では定期的なミーティングで進捗を共有し調整します。これにより、新規事業推進の体制を効果的に整えることができます。

[AI新規事業創出]Qualitegオリジナル、事業責任者との合意形成のための新規事業方向性まとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


このブログでは事業責任者と新規事業で達成すべきゴールをどのように事前に合意形成すべきかについて解説していきます。

Step1: ゴールの明確化と認識の共有

まず、初めに事業のビジョンと目標を明確に定義し、それを文書化します。パワーポイントなどでエグゼクティブサマリーとして1ページにまとめ、事業責任者と一緒に具体的な数値目標(売上、顧客数、市場シェアなど)について、それぞれのゴールが事業の成功にどのように寄与するかを議論します。

このフェーズでのポイントは目標がいかにリアリスティックで達成可能かどうかが評価されますので、自分でも達成できないような例えば1年で売上100億円達成のような大きすぎる目標は避けるようにしましょう。

初めに行ったMVV分析をもとに、自社がなぜその新規事業を行うべきか、自社のMVVの振り返りと読み解き、コンテキスト理解も踏まえたうえで新規事業を実施する必要性について説明いします。

次に説明するのは、何をもって新規事業の事業化判断を行うかの基準について議論します。前コラムで解説した定量的目標設定の内容を明確化し、具体的な数値をもって、この数値を達成するために新規事業を行うという趣旨をお伝えしましょう。

多くの企業では、イノベーションが理念としては語られても、実際の行動に結びつかないことがあります。株式会社Qualitegの Innovation-Crossは、この「言行一致のギャップ」を埋める共創支援プログラム。企業の現状と課題を徹底分析し、具体的なアクションへと落とし込む戦略を策定します。アイデアワークショップやハッカソン企画を通じて実践的な場を創出し、「自社だけでは変わりにくい」イノベーション行動を促進。

オープンイノベーションやパートナー開拓の実践を通じて、外部との協業による価値創造の体験を積み重ねます。経験豊富な専門コンサルタントが伴走し、理念から行動へ、行動から成果へという変革の流れを確実に実現。イノベーションを「語る文化」から「行動する文化」へと変革します。

Step2: ロードマップの作成

続いて必要なことは、ロードマップの作製になります。合意されたゴールを達成するための、開発スケジュール、マーケティング戦略立案などの主要なマイルストーンを設定しましょう。

それらのマイルストーンの達成判断をするための数値目標としてのKPI(重要業績評価指標)を設定することで、手戻りがない事業開発を行うことが可能です。

yellow arrow road sign

Step3: コミュニケーションと調整

最後に必要なことはコミュニケーション計画の説明です。事業責任者との定期的なミーティングを設けて、進捗状況を共有して計画の進捗度合いを報告します。

事前にコミュニケーション計画を設定することで、すべての関係者が同じ情報を持ち、例えば競合から類似サービスのリリース情報が出た場合などの、万が一変更が必要になった場合にも備えることが可能ですので、チームで共同して対応できる新規事業推進体制を作ることが可能です。

事業責任者にあらゆる観点で事前にコミットすることは、担当者にとってはハードルが高いケースもありますが、事前にコミュニケーション計画やマイルストーンを提示することで信頼感も生まれ、新規事業を推進する上で役に立つことでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部