RakutenAI-7B-chat を使用したチャットアプリケーションを5分で作る

RakutenAI-7B-chat を使用したチャットアプリケーションを5分で作る

こんにちは、株式会社 Qualiteg プロダクト開発部です。

今日は、 RakutenAI-7B-chat と ChatStream 0.7.0 を使用して本格的なチャットアプリケーションを作っていきましょう。

RakutenAI-7B-chat は Mistral 7B を日本語継続学習させたモデルで、チャットチューニングが行われており、 日本語LLM リーダーボード https://wandb.ai/wandb-japan/llm-leaderboard/reports/Nejumi-LLM-Neo--Vmlldzo2MTkyMTU0でも上位にランクされている期待大のモデルです。

ソースコード

早速ですが、以下がソースコードとなります。

4bit 量子化をしているため、使用する GPU は A4000 (16GB) 程度で快適に動作します。

import logging

import torch
import uvicorn
from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

from chatstream import ChatStream, ChatPromptRakutenMistral as ChatPrompt, LoadTime, TokenSamplerIsok
from chatstream.fastersession.faster_session_rdb_store import FasterSessionRdbStore
from chatstream.util.session.chat_stream_session_on_set_value_listener import chat_stream_session_on_set_value_listener

"""
'Rakuten/RakutenAI-7B-chat' の ChatStream Server のサンプルプログラム

- 開発用構成です(本番では、ChatStreamPool によるスケールアウトや、Qualiteg SunsetServer など、セキュアで堅牢なロードバランサー、リバースプロキシ導入を推奨しています)
- 単体起動用(スケールアウトモードのノードではなく、シングルインスタンスでWebアプリケーション、WebAPIサーバーとして振る舞います)
- モデルは 4bit 量子化 として扱います
"""

num_gpus = 1  # このノードで使用する GPU数
device = torch.device("cuda")
model_path = 'Rakuten/RakutenAI-7B-chat'
use_fast = True

# 4bit 量子化で使用するときの config
quantization_config = BitsAndBytesConfig(load_in_4bit=True)

# モデル読み込み(LoadTime を使用することで、進捗表示をしながら読み込みする)
model = LoadTime(name=model_path, hf=True,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path,
                                                                 quantization_config=quantization_config,
                                                                 device_map="auto"))()

model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_path)

# ChatStream で使用するデータベース情報を設定する
database_def = {
    "type": "rdbms",  # "memory","rdbms","mongo","redis"
    "rdbms": {
        "db_url": "[your_db_url]"  # DBを指定してください
    },
    "db": None  # DBオブジェクトを直接する場合はこちらを記述してください
}

server_host_info = {'protocol': 'http', 'host': 'localhost', 'port': 9999}

num_of_concurrent_executions = 10  # 最大同時文章生成数
max_new_tokens = 512  # 最大トークン生成数
tokens_per_sec = 6  # num_of_concurrent_executions 件の同時接続があったときトークン生成速度(tokens/sec)
text_generation_timeout_sec = (max_new_tokens / tokens_per_sec) + 10  # 1回あたりの文章生成タイムアウト時間。+10 は余裕時間。

# ChatStream インスタンスを生成する
chat_stream = ChatStream(
    num_of_concurrent_executions=num_of_concurrent_executions,  # 最大同時文章生成数
    max_queue_size=5,  # 最大文章生成数に達したときの待ち行列の大きさ。この大きさを超えるリクエストがあるとき Too many request エラーとなる。
    model_id='rakuten__rakuten_ai_7b_chat',  # モデルID

    model_support_languages=['ja', 'en'],  # モデルがサポートしている言語。
    model_desc={
        'disp_name': {'en': 'RakutenAI-7B-chat', 'ja': 'RakutenAI-7B-chat', },  # UI表示用モデル名
        'about': {
            'ja': '2024/3/21 にリリースされた Mistral-7B-v0.1 ベースの日本語LLM',  # UI 表示用説明文(日本語)
            'en': 'Japanese LLM based on Mistral-7B-v0.1 released on 3/21/2024',  # UI 表示用説明文(English)
        },
        'default_utterance_hints': [
            {'utterance': {'ja': "Who starred in the movie 'Titanic' released in 1997?",  # UI 表示サンプル発話(日本語)
                           'en': "Who starred in the movie 'Titanic' released in 1997?",  # UI 表示サンプル発話(English)
                           },
             'desc': {'ja': '映画タイタニックの主演は?',  # UI 表示サンプル発話の説明文(日本語)
                      'en': '',  # UI 表示サンプル発話の説明文(English)
                      }
             },
        ]
    },
    server_host_info=server_host_info,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,  # このモデル用の ChatPrompt をセットする
    add_special_tokens=False,  # 特殊トークン追加の有無
    text_generation_timeout_sec=text_generation_timeout_sec,  # タイムアウトは同時ユーザー数が最大のときのトークン生成速度xmax_new_tokens から計算する
    max_new_tokens=max_new_tokens,  # 1回あたりの最大トークン生成数
    context_len=1024,  # コンテクスト長をセットする
    temperature=0.7,  # サンプリングパラメータ temperature をセットする
    top_k=10,  # サンプリングパラメータ top K
    # top_p=0.9,  # サンプリングパラメータ top P をセットする
    repetition_penalty=1.05,  # サンプリングパラメータ 繰り返しペナルティ をセットする
    database=database_def,  # データベース情報をセットする
    client_roles={
        "user": {
            "apis": {
                "allow": "all",  # [DefaultApiNames.CHAT_STREAM, ],
                "auth_method": "nothing",  # 本 ChatStream は単体起動するため 認証無し とする(スケールアウトモードの場合は適切なサーバー認証をセットします)
                "use_session": True,  # 本 ChatStream は単体起動するため use_session:True とする。(スケールアウトモードで起動するときは use_session:False とします)
            }
        },
    },  # ロールをセットする。
    locale='ja',
    token_sampler=TokenSamplerIsok(),  # TokenSamplerHft() # TokenSamplerIsok() #
    seed=42,
)

chat_stream.logger.setLevel(logging.DEBUG)

# セッションデータを RDBMS に保存する ストア
rdb_store = FasterSessionRdbStore(database_def=database_def,
                                  on_set_value_listener=chat_stream_session_on_set_value_listener,  # シリアライズできないオブジェクトをセッションの永続化時にスキップするヘルパー
                                  )
# memory_store = get_chat_stream_session_memory_store() # セッションデータをメモリに保存する
# file_store = get_chat_stream_session_file_store() # セッションデータをファイルに保存する

# ChatStreamに追加するミドルウェアの設定用dict
mw_opts = {
    "faster_session": {
        "secret_key": "chatstream-default-session-secret-key",
        "store": rdb_store,  # session をファイルに保存するファイルストアを取得する
        # "same_site":"Strict", # set-cookie の same_site 属性、デフォルトは Strict
        # "is_http_only":True,# set-cookie の http_only 属性、デフォルトは True
        # "is_secure":True,# set-cookie の secure 属性、デフォルトは True
        # "max_age":0 # set-cookie の max_age 属性、デフォルトは True
    },
}

# FastAPI インスタンスを作る
app = FastAPI()

# 必要なミドルウェアを自動的に追加する(手動で設定することも可能です)
chat_stream.append_middlewares(app, opts=mw_opts)

# 必要なAPIを自動的に追加する(生やす)
# ここではすべての API を追加していますが、用途に応じてAPIを選択することも可能です
# 各 URLパスの具体的な内容は default_api_paths.py を参照してください
chat_stream.append_apis(app, {"all": True})


@app.on_event("startup")
async def startup():
    # Web サーバーの起動後
    # ChatStreamのキューイングシステムを開始する
    await chat_stream.start_queue_worker()


def start_server():
    # Web サーバーを起動する
    uvicorn.run(app, host=server_host_info.get('host'), port=server_host_info.get('port'))


def main():
    start_server()


if __name__ == "__main__":
    main()

モデルへの入出力に使用する ChatPrompt クラスは、最新版の ChatStream に同梱されている ChatPromptRakutenMistral を使用します。

または、以下の記事を参考に自ら作成することも可能です。

https://blog.qualiteg.com/chatprompt_rakuten_ai_7b_chat/

さて、さっそくこのコードを実行して、チャットを試してみましょう

無事起動し、Web ブラウザからチャットを試すことができました!

Qualitegプロダクト開発部では、HuggingFaceに最新のモデルが発表された都度、迅速にChatStream へのポーティングを行っています。

そのため、最新のモデルでもほぼコードを書かずに、すぐにお試しいただけます。今回も、ほぼボイラープレートのみで本格 LLM チャットを実装することができました。

それでは、また次回のLLMでお会いしましょう!

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部