RakutenAI-7B-chat を使用したチャットアプリケーションを5分で作る

RakutenAI-7B-chat を使用したチャットアプリケーションを5分で作る

こんにちは、株式会社 Qualiteg プロダクト開発部です。

今日は、 RakutenAI-7B-chat と ChatStream 0.7.0 を使用して本格的なチャットアプリケーションを作っていきましょう。

RakutenAI-7B-chat は Mistral 7B を日本語継続学習させたモデルで、チャットチューニングが行われており、 日本語LLM リーダーボード https://wandb.ai/wandb-japan/llm-leaderboard/reports/Nejumi-LLM-Neo--Vmlldzo2MTkyMTU0でも上位にランクされている期待大のモデルです。

ソースコード

早速ですが、以下がソースコードとなります。

4bit 量子化をしているため、使用する GPU は A4000 (16GB) 程度で快適に動作します。

import logging

import torch
import uvicorn
from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

from chatstream import ChatStream, ChatPromptRakutenMistral as ChatPrompt, LoadTime, TokenSamplerIsok
from chatstream.fastersession.faster_session_rdb_store import FasterSessionRdbStore
from chatstream.util.session.chat_stream_session_on_set_value_listener import chat_stream_session_on_set_value_listener

"""
'Rakuten/RakutenAI-7B-chat' の ChatStream Server のサンプルプログラム

- 開発用構成です(本番では、ChatStreamPool によるスケールアウトや、Qualiteg SunsetServer など、セキュアで堅牢なロードバランサー、リバースプロキシ導入を推奨しています)
- 単体起動用(スケールアウトモードのノードではなく、シングルインスタンスでWebアプリケーション、WebAPIサーバーとして振る舞います)
- モデルは 4bit 量子化 として扱います
"""

num_gpus = 1  # このノードで使用する GPU数
device = torch.device("cuda")
model_path = 'Rakuten/RakutenAI-7B-chat'
use_fast = True

# 4bit 量子化で使用するときの config
quantization_config = BitsAndBytesConfig(load_in_4bit=True)

# モデル読み込み(LoadTime を使用することで、進捗表示をしながら読み込みする)
model = LoadTime(name=model_path, hf=True,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path,
                                                                 quantization_config=quantization_config,
                                                                 device_map="auto"))()

model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_path)

# ChatStream で使用するデータベース情報を設定する
database_def = {
    "type": "rdbms",  # "memory","rdbms","mongo","redis"
    "rdbms": {
        "db_url": "[your_db_url]"  # DBを指定してください
    },
    "db": None  # DBオブジェクトを直接する場合はこちらを記述してください
}

server_host_info = {'protocol': 'http', 'host': 'localhost', 'port': 9999}

num_of_concurrent_executions = 10  # 最大同時文章生成数
max_new_tokens = 512  # 最大トークン生成数
tokens_per_sec = 6  # num_of_concurrent_executions 件の同時接続があったときトークン生成速度(tokens/sec)
text_generation_timeout_sec = (max_new_tokens / tokens_per_sec) + 10  # 1回あたりの文章生成タイムアウト時間。+10 は余裕時間。

# ChatStream インスタンスを生成する
chat_stream = ChatStream(
    num_of_concurrent_executions=num_of_concurrent_executions,  # 最大同時文章生成数
    max_queue_size=5,  # 最大文章生成数に達したときの待ち行列の大きさ。この大きさを超えるリクエストがあるとき Too many request エラーとなる。
    model_id='rakuten__rakuten_ai_7b_chat',  # モデルID

    model_support_languages=['ja', 'en'],  # モデルがサポートしている言語。
    model_desc={
        'disp_name': {'en': 'RakutenAI-7B-chat', 'ja': 'RakutenAI-7B-chat', },  # UI表示用モデル名
        'about': {
            'ja': '2024/3/21 にリリースされた Mistral-7B-v0.1 ベースの日本語LLM',  # UI 表示用説明文(日本語)
            'en': 'Japanese LLM based on Mistral-7B-v0.1 released on 3/21/2024',  # UI 表示用説明文(English)
        },
        'default_utterance_hints': [
            {'utterance': {'ja': "Who starred in the movie 'Titanic' released in 1997?",  # UI 表示サンプル発話(日本語)
                           'en': "Who starred in the movie 'Titanic' released in 1997?",  # UI 表示サンプル発話(English)
                           },
             'desc': {'ja': '映画タイタニックの主演は?',  # UI 表示サンプル発話の説明文(日本語)
                      'en': '',  # UI 表示サンプル発話の説明文(English)
                      }
             },
        ]
    },
    server_host_info=server_host_info,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,  # このモデル用の ChatPrompt をセットする
    add_special_tokens=False,  # 特殊トークン追加の有無
    text_generation_timeout_sec=text_generation_timeout_sec,  # タイムアウトは同時ユーザー数が最大のときのトークン生成速度xmax_new_tokens から計算する
    max_new_tokens=max_new_tokens,  # 1回あたりの最大トークン生成数
    context_len=1024,  # コンテクスト長をセットする
    temperature=0.7,  # サンプリングパラメータ temperature をセットする
    top_k=10,  # サンプリングパラメータ top K
    # top_p=0.9,  # サンプリングパラメータ top P をセットする
    repetition_penalty=1.05,  # サンプリングパラメータ 繰り返しペナルティ をセットする
    database=database_def,  # データベース情報をセットする
    client_roles={
        "user": {
            "apis": {
                "allow": "all",  # [DefaultApiNames.CHAT_STREAM, ],
                "auth_method": "nothing",  # 本 ChatStream は単体起動するため 認証無し とする(スケールアウトモードの場合は適切なサーバー認証をセットします)
                "use_session": True,  # 本 ChatStream は単体起動するため use_session:True とする。(スケールアウトモードで起動するときは use_session:False とします)
            }
        },
    },  # ロールをセットする。
    locale='ja',
    token_sampler=TokenSamplerIsok(),  # TokenSamplerHft() # TokenSamplerIsok() #
    seed=42,
)

chat_stream.logger.setLevel(logging.DEBUG)

# セッションデータを RDBMS に保存する ストア
rdb_store = FasterSessionRdbStore(database_def=database_def,
                                  on_set_value_listener=chat_stream_session_on_set_value_listener,  # シリアライズできないオブジェクトをセッションの永続化時にスキップするヘルパー
                                  )
# memory_store = get_chat_stream_session_memory_store() # セッションデータをメモリに保存する
# file_store = get_chat_stream_session_file_store() # セッションデータをファイルに保存する

# ChatStreamに追加するミドルウェアの設定用dict
mw_opts = {
    "faster_session": {
        "secret_key": "chatstream-default-session-secret-key",
        "store": rdb_store,  # session をファイルに保存するファイルストアを取得する
        # "same_site":"Strict", # set-cookie の same_site 属性、デフォルトは Strict
        # "is_http_only":True,# set-cookie の http_only 属性、デフォルトは True
        # "is_secure":True,# set-cookie の secure 属性、デフォルトは True
        # "max_age":0 # set-cookie の max_age 属性、デフォルトは True
    },
}

# FastAPI インスタンスを作る
app = FastAPI()

# 必要なミドルウェアを自動的に追加する(手動で設定することも可能です)
chat_stream.append_middlewares(app, opts=mw_opts)

# 必要なAPIを自動的に追加する(生やす)
# ここではすべての API を追加していますが、用途に応じてAPIを選択することも可能です
# 各 URLパスの具体的な内容は default_api_paths.py を参照してください
chat_stream.append_apis(app, {"all": True})


@app.on_event("startup")
async def startup():
    # Web サーバーの起動後
    # ChatStreamのキューイングシステムを開始する
    await chat_stream.start_queue_worker()


def start_server():
    # Web サーバーを起動する
    uvicorn.run(app, host=server_host_info.get('host'), port=server_host_info.get('port'))


def main():
    start_server()


if __name__ == "__main__":
    main()

モデルへの入出力に使用する ChatPrompt クラスは、最新版の ChatStream に同梱されている ChatPromptRakutenMistral を使用します。

または、以下の記事を参考に自ら作成することも可能です。

https://blog.qualiteg.com/chatprompt_rakuten_ai_7b_chat/

さて、さっそくこのコードを実行して、チャットを試してみましょう

無事起動し、Web ブラウザからチャットを試すことができました!

Qualitegプロダクト開発部では、HuggingFaceに最新のモデルが発表された都度、迅速にChatStream へのポーティングを行っています。

そのため、最新のモデルでもほぼコードを書かずに、すぐにお試しいただけます。今回も、ほぼボイラープレートのみで本格 LLM チャットを実装することができました。

それでは、また次回のLLMでお会いしましょう!

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース