RakutenAI-7B-chat を使用したチャットアプリケーションを5分で作る

RakutenAI-7B-chat を使用したチャットアプリケーションを5分で作る

こんにちは、株式会社 Qualiteg プロダクト開発部です。

今日は、 RakutenAI-7B-chat と ChatStream 0.7.0 を使用して本格的なチャットアプリケーションを作っていきましょう。

RakutenAI-7B-chat は Mistral 7B を日本語継続学習させたモデルで、チャットチューニングが行われており、 日本語LLM リーダーボード https://wandb.ai/wandb-japan/llm-leaderboard/reports/Nejumi-LLM-Neo--Vmlldzo2MTkyMTU0でも上位にランクされている期待大のモデルです。

ソースコード

早速ですが、以下がソースコードとなります。

4bit 量子化をしているため、使用する GPU は A4000 (16GB) 程度で快適に動作します。

import logging

import torch
import uvicorn
from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

from chatstream import ChatStream, ChatPromptRakutenMistral as ChatPrompt, LoadTime, TokenSamplerIsok
from chatstream.fastersession.faster_session_rdb_store import FasterSessionRdbStore
from chatstream.util.session.chat_stream_session_on_set_value_listener import chat_stream_session_on_set_value_listener

"""
'Rakuten/RakutenAI-7B-chat' の ChatStream Server のサンプルプログラム

- 開発用構成です(本番では、ChatStreamPool によるスケールアウトや、Qualiteg SunsetServer など、セキュアで堅牢なロードバランサー、リバースプロキシ導入を推奨しています)
- 単体起動用(スケールアウトモードのノードではなく、シングルインスタンスでWebアプリケーション、WebAPIサーバーとして振る舞います)
- モデルは 4bit 量子化 として扱います
"""

num_gpus = 1  # このノードで使用する GPU数
device = torch.device("cuda")
model_path = 'Rakuten/RakutenAI-7B-chat'
use_fast = True

# 4bit 量子化で使用するときの config
quantization_config = BitsAndBytesConfig(load_in_4bit=True)

# モデル読み込み(LoadTime を使用することで、進捗表示をしながら読み込みする)
model = LoadTime(name=model_path, hf=True,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path,
                                                                 quantization_config=quantization_config,
                                                                 device_map="auto"))()

model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_path)

# ChatStream で使用するデータベース情報を設定する
database_def = {
    "type": "rdbms",  # "memory","rdbms","mongo","redis"
    "rdbms": {
        "db_url": "[your_db_url]"  # DBを指定してください
    },
    "db": None  # DBオブジェクトを直接する場合はこちらを記述してください
}

server_host_info = {'protocol': 'http', 'host': 'localhost', 'port': 9999}

num_of_concurrent_executions = 10  # 最大同時文章生成数
max_new_tokens = 512  # 最大トークン生成数
tokens_per_sec = 6  # num_of_concurrent_executions 件の同時接続があったときトークン生成速度(tokens/sec)
text_generation_timeout_sec = (max_new_tokens / tokens_per_sec) + 10  # 1回あたりの文章生成タイムアウト時間。+10 は余裕時間。

# ChatStream インスタンスを生成する
chat_stream = ChatStream(
    num_of_concurrent_executions=num_of_concurrent_executions,  # 最大同時文章生成数
    max_queue_size=5,  # 最大文章生成数に達したときの待ち行列の大きさ。この大きさを超えるリクエストがあるとき Too many request エラーとなる。
    model_id='rakuten__rakuten_ai_7b_chat',  # モデルID

    model_support_languages=['ja', 'en'],  # モデルがサポートしている言語。
    model_desc={
        'disp_name': {'en': 'RakutenAI-7B-chat', 'ja': 'RakutenAI-7B-chat', },  # UI表示用モデル名
        'about': {
            'ja': '2024/3/21 にリリースされた Mistral-7B-v0.1 ベースの日本語LLM',  # UI 表示用説明文(日本語)
            'en': 'Japanese LLM based on Mistral-7B-v0.1 released on 3/21/2024',  # UI 表示用説明文(English)
        },
        'default_utterance_hints': [
            {'utterance': {'ja': "Who starred in the movie 'Titanic' released in 1997?",  # UI 表示サンプル発話(日本語)
                           'en': "Who starred in the movie 'Titanic' released in 1997?",  # UI 表示サンプル発話(English)
                           },
             'desc': {'ja': '映画タイタニックの主演は?',  # UI 表示サンプル発話の説明文(日本語)
                      'en': '',  # UI 表示サンプル発話の説明文(English)
                      }
             },
        ]
    },
    server_host_info=server_host_info,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,  # このモデル用の ChatPrompt をセットする
    add_special_tokens=False,  # 特殊トークン追加の有無
    text_generation_timeout_sec=text_generation_timeout_sec,  # タイムアウトは同時ユーザー数が最大のときのトークン生成速度xmax_new_tokens から計算する
    max_new_tokens=max_new_tokens,  # 1回あたりの最大トークン生成数
    context_len=1024,  # コンテクスト長をセットする
    temperature=0.7,  # サンプリングパラメータ temperature をセットする
    top_k=10,  # サンプリングパラメータ top K
    # top_p=0.9,  # サンプリングパラメータ top P をセットする
    repetition_penalty=1.05,  # サンプリングパラメータ 繰り返しペナルティ をセットする
    database=database_def,  # データベース情報をセットする
    client_roles={
        "user": {
            "apis": {
                "allow": "all",  # [DefaultApiNames.CHAT_STREAM, ],
                "auth_method": "nothing",  # 本 ChatStream は単体起動するため 認証無し とする(スケールアウトモードの場合は適切なサーバー認証をセットします)
                "use_session": True,  # 本 ChatStream は単体起動するため use_session:True とする。(スケールアウトモードで起動するときは use_session:False とします)
            }
        },
    },  # ロールをセットする。
    locale='ja',
    token_sampler=TokenSamplerIsok(),  # TokenSamplerHft() # TokenSamplerIsok() #
    seed=42,
)

chat_stream.logger.setLevel(logging.DEBUG)

# セッションデータを RDBMS に保存する ストア
rdb_store = FasterSessionRdbStore(database_def=database_def,
                                  on_set_value_listener=chat_stream_session_on_set_value_listener,  # シリアライズできないオブジェクトをセッションの永続化時にスキップするヘルパー
                                  )
# memory_store = get_chat_stream_session_memory_store() # セッションデータをメモリに保存する
# file_store = get_chat_stream_session_file_store() # セッションデータをファイルに保存する

# ChatStreamに追加するミドルウェアの設定用dict
mw_opts = {
    "faster_session": {
        "secret_key": "chatstream-default-session-secret-key",
        "store": rdb_store,  # session をファイルに保存するファイルストアを取得する
        # "same_site":"Strict", # set-cookie の same_site 属性、デフォルトは Strict
        # "is_http_only":True,# set-cookie の http_only 属性、デフォルトは True
        # "is_secure":True,# set-cookie の secure 属性、デフォルトは True
        # "max_age":0 # set-cookie の max_age 属性、デフォルトは True
    },
}

# FastAPI インスタンスを作る
app = FastAPI()

# 必要なミドルウェアを自動的に追加する(手動で設定することも可能です)
chat_stream.append_middlewares(app, opts=mw_opts)

# 必要なAPIを自動的に追加する(生やす)
# ここではすべての API を追加していますが、用途に応じてAPIを選択することも可能です
# 各 URLパスの具体的な内容は default_api_paths.py を参照してください
chat_stream.append_apis(app, {"all": True})


@app.on_event("startup")
async def startup():
    # Web サーバーの起動後
    # ChatStreamのキューイングシステムを開始する
    await chat_stream.start_queue_worker()


def start_server():
    # Web サーバーを起動する
    uvicorn.run(app, host=server_host_info.get('host'), port=server_host_info.get('port'))


def main():
    start_server()


if __name__ == "__main__":
    main()

モデルへの入出力に使用する ChatPrompt クラスは、最新版の ChatStream に同梱されている ChatPromptRakutenMistral を使用します。

または、以下の記事を参考に自ら作成することも可能です。

https://blog.qualiteg.com/chatprompt_rakuten_ai_7b_chat/

さて、さっそくこのコードを実行して、チャットを試してみましょう

無事起動し、Web ブラウザからチャットを試すことができました!

Qualitegプロダクト開発部では、HuggingFaceに最新のモデルが発表された都度、迅速にChatStream へのポーティングを行っています。

そのため、最新のモデルでもほぼコードを書かずに、すぐにお試しいただけます。今回も、ほぼボイラープレートのみで本格 LLM チャットを実装することができました。

それでは、また次回のLLMでお会いしましょう!

Read more

産業交流展2024 に出展いたしました

産業交流展2024 に出展いたしました

こんにちは! 2024年11月21日~11月23日の3日間 東京ビックサイトにて開催された産業交流展2024(リアル展)において、当社のプロダクト・サービスの展示を行いました。 多くの方々に当社ブースへお立ち寄りいただき、誠にありがとうございました! (産業交流展2024のオンライン展示会は 2024年11月29日まで開催中です!) 本ブログでは、展示会当日の様子を簡単にレポートさせていただきます。 展示会の様子 当社ブースは「東京ビジネスフロンティア」パビリオン内に設けていただきました。 当社からは3名体制で、 エンタープライズLLMソリューション「Bestllam 」やLLMセキュリティソリューション「 LLM-Audit」 、経産省認定講座「AI・DX研修」についてデモンストレーションおよびご説明・ご案内をさせていただきました。 さらに、ステラリンク社さまのご厚意により、このかわいい移動式サイネージ「AdRobot」に、当社ブースの宣伝もしていただきました! 特典カード さて、ブースにお立ち寄りの際にお渡しした、Bestllam特典カードの招待コー

By Qualiteg ビジネス開発本部 | マーケティング部
「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

こんにちは! 本稿はWindows Server 2022 Datacenterエディションに「Windowsターミナル」をインストールする方法のメモです。 ステップバイステップでやるのは少し手間だったので、Powershellにペタっとするだけで自動的にインストールできるよう手順をスクリプト化しました。 管理者権限で開いた Powershell に以下、スクリプトをペタっとすると、後は勝手に「Windowsターミナル」がインストールされます。 (ただしスクリプトの実行結果の保証も責任も負いかねます) なにが手間か 何が手間かというと、Windows Server 2022 では、StoreもApp Installer(winget)もデフォルトではインストールされていないため「Windowsターミナル」をマニュアルでインストールしなければなりませんでした。 そこでペタっとするだけのスクリプト化 管理者権限で開いたPowershellに以下のスクリプトをペタっとすると「Windowsターミナル」が無事インストールされます。 パッケージのダウンロード先には [ユーザ

By Qualiteg プロダクト開発部
産業交流展2024に出展いたします

産業交流展2024に出展いたします

平素は当社事業に格別のご高配を賜り、厚く御礼申し上げます。 以前にもご案内させていただきましたが、この度、株式会社Qualitegは、多くの優れた企業が一堂に会する国内最大級の総合展示会「産業交流展2024」に出展する運びとなりました。 本展示会では、当社の最新のサービス・ソリューションを展示させていただきます。ご来場の皆様に直接ご説明させていただく貴重な機会として、ぜひブースまでお立ち寄りくださいませ 展示会概要 * 名称: 産業交流展2024 * 会期: 2024年11月20日(水)~22日(金) * 会場: 東京ビッグサイト 1・2ホール、アトリウム * 西1ホール 東京ビジネスフロンティアゾーン ビ-15 * 入場料: 無料(事前登録制) 開催時間 * 11月20日(水) 10:00~17:00 * 11月21日(木) 10:00~17:00 * 11月22日(金) 10:00~16:00

By Qualiteg ニュース
Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。 そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。 1. ユーザー中心の問題定義 サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします: * ターゲットユーザーへの徹底的なインタビュー * 既存の解決策の分析と不足点の特定 * ユーザーの行動パターン

By Join us, Michele on Qualiteg's adventure to innovation