[ChatStream] Llama2 対応の ChatPrompt実装

[ChatStream] Llama2 対応の ChatPrompt実装

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatStream にLlama2 対応の ChatPrompt を同梱いたしましたのでご紹介いたします!

現在の ChatPrompt は以下とおりとなっております。旧バージョンのChatStreamをご利用の場合も、以下コードにて Llama2対応可能です。(もちろん最新バージョンのChatStreamには同梱済です)

from chatstream import AbstractChatPrompt
from chatstream.chat_prompt.role_type import RoleType

SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
"""


class ChatPromptMetaLlamaLlama2Chat(AbstractChatPrompt):
    """
    meta-llama/Llama-2-7b-chat

    Prompt Guide from
    https://huggingface.co/blog/llama2
    """

    def __init__(self):
        super().__init__()  # Call the initialization of the base class
        self.set_system(f"<s>[INST] <<SYS>>\n{SYSTEM_PROMPT}\n<</SYS>>\n\n")
        self.set_requester("")
        self.set_responder("")

    def get_stop_strs(self):
        if not self.chat_mode:
            return None
        return []

    def get_custom_skip_echo_len(self, skip_echo_len):
        # modify skip_echo_len when using llama2
        num_turn = self.get_turn()
        if num_turn >= 2:
            modified_skip_echo_len = skip_echo_len + 1 * self.get_turn()
            return modified_skip_echo_len
        return skip_echo_len

    def get_replacement_when_input(self):
        return None

    def get_replacement_when_output(self):  # replace when response_text gotten
        return None

    def create_prompt(self, opts={}):
        if self.chat_mode == False:
            return self.get_requester_last_msg()

        # Chat Mode == True の場合のプロンプトを構築する
        ret = self.system

        for chat_content in self.get_contents(opts):

            chat_content_role_type = chat_content.get_role_type()
            chat_content_message = chat_content.get_message()

            if chat_content_message:
                merged_message = ""
                if chat_content_role_type == RoleType.REQUESTER:
                    merged_message = f"{chat_content_message} [/INST] "
                elif chat_content_role_type == RoleType.RESPONDER:
                    merged_message = f"{chat_content_message} </s><s>[INST] "
                ret += merged_message
            else:
                pass

        return ret

    def build_initial_prompt(self, chat_prompt):
        # 初期プロンプトは実装しない
        pass


本実装については、1点だけトリッキーな実装を含んでいます。
というのも、ChatStreamはストリーミングチャットが基本ですので新たに生成された1トークン分を更新していくことでリアルタイムで流れるようなチャットを実現しています。そのため、出力が期待と1文字でもズレてしまうと、ストリーミング時に1文字かけたり、全体が1文字ずつズレてしまったりする現象が発生しやすいです。

Llama2の出力の場合、ターンごとに1文字ずつ出力に空白文字が発生する現象が確認されており、 なにがしかのSpecial Token や空トークン、またコード変換の影響を疑っていましたが根本原因の特定に至らず、現象をキャンセルするための実装を入れています。

現象としましては、

以下のプロンプトを入力プロンプトとしたとき、

<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>

Do you know the movie titanic [/INST] Hello! Yes, I'm familiar with the movie Titanic. It's a classic film directed by James Cameron, released in 1997, and starring Leonardo DiCaprio and Kate Winslet. The movie is based on the true story of the RMS Titanic, a British passenger liner that sank in the North Atlantic Ocean in 1912 after colliding with an iceberg. The film follows the story of Jack Dawson (played by DiCaprio) and Rose DeWitt Bukater (played by Winslet), who come from </s><s>[INST] Who is the director [/INST] The director of the movie "Titanic" is James Cameron. </s><s>[INST] Who is starred [/INST] ]  The movie "Titanic" features a star-studded cast, including:
* Leonardo DiCaprio as Jack Dawson
* Kate Winslet as Rose DeWitt Bukater
* Billy Zane as Cal Hockley
* Kathy Bates as Molly Brown
* Frances Fisher as Ruth DeWitt Bukater
* Bernard Hill as Captain Edward John Smith
* Jonathan Hyde as J. Bruce Ismay
* Eric Braeden as John Jacob Astor IV
* Gloria Stuart as Old Rose

These actors brought the characters from the movie to life and </s><s>[INST] 

出力は以下のようになります

[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>

Do you know the movie titanic [/INST] Hello! Yes, I'm familiar with the movie Titanic. It's a classic film directed by James Cameron, released in 1997, and starring Leonardo DiCaprio and Kate Winslet. The movie is based on the true story of the RMS Titanic, a British passenger liner that sank in the North Atlantic Ocean in 1912 after colliding with an iceberg. The film follows the story of Jack Dawson (played by DiCaprio) and Rose DeWitt Bukater (played by Winslet), who come from  [INST] Who is the director [/INST] The director of the movie "Titanic" is James Cameron.  [INST] Who is starred [/INST]

Input:
Do you know the movie titanic [/INST] Hello! Yes, I'm familiar with the movie Titanic. It's a classic film directed by James Cameron, released in 1997, and starring Leonardo DiCaprio and Kate Winslet. The movie is based on the true story of the RMS Titanic, a British passenger liner that sank in the North Atlantic Ocean in 1912 after colliding with an iceberg. The film follows the story of Jack Dawson (played by DiCaprio) and Rose DeWitt Bukater (played by Winslet), who come from [INST] Who is the director [/INST] The director of the movie "Titanic" is James Cameron. [INST] Who is starred [/INST] 

つまり入力プロンプトが [INST] つまり 半角スペース1つ[INST] でも出力で、 [INST]半角スペース2つ + [INST] となって戻ってくるため、新規生成文章の切り出しで1レスポンスにたいして1文字ズレの発生が観測されます。

それならばと、入力プロンプトを 半角スペース2つ[INST] で入力したが、その場合は出力生成文は 半角スペース3つ[INST]
となり、ズレが解消されないようです。

このとき、通常のテキスト処理で trim していく方法もありますが、当ChatPromptではなるべくもとの入力と出力を変形しないことをポリシーとして、

    def get_custom_skip_echo_len(self, skip_echo_len):
        # modify skip_echo_len when using llama2
        num_turn = self.get_turn()
        if num_turn >= 2:
            modified_skip_echo_len = skip_echo_len + 1 * self.get_turn()
            return modified_skip_echo_len
        return skip_echo_len

のように、 skip_echo_len をターンにあわせて調整することでピッタリの切り出しに対応しました。約1000通りの入出力において、問題なく切り出せているため、本手法を workaround として採用しています。ちょっとした見落としの可能性も高そうなので根治のために研究部側で引き続き原因調査しています。

Llama2 をベースモデルとして採用しているほかモデルも同様の現象が発生していますが、本手法にて解決できました。

Read more

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部
サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング