システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは!

先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

本稿では、どうしたらこのエラーを直せるか、だけでなく、なぜこのエラーが発生してしまうのかを解説いたします。

まず、直し方から

まず直し方ですが、以下のコマンドでエラーを解消することができます。

conda install -c conda-forge libstdcxx-ng

GLIBCXX_x.x.x not found が発生するカラクリ

実際の環境構築、パッケージのビルド・インストールシーンでこの問題が発生するメカニズムを明らかにしたいとおもいます

STEP1. まずAnacondaのインストールからみていこう

Anacondaは以下のようにインストールしました。あえて少し古いAnacondaをつかっています。

# anaconda インストール
wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

bash Anaconda3-2024.02-1-Linux-x86_64.sh -b

echo "export PATH=~/anaconda3/bin:\$PATH" >> ~/.bashrc
source ~/.bashrc


これでAnacondaはインストールできました。

STEP2.dlibのインストールに必要なcmakeを入れる

あとでdlibをインストールしますがdlibはPythonパッケージですが、インストール時にバイナリがビルドされますので、そのビルドができるようにシステムにcmakeを入れておきます

sudo apt-get update
sudo apt install -y build-essential
sudo apt-get install -y cmake

build-essential パッケージのインストールでは、

The following NEW packages will be installed:
  build-essential g++ g++-13 libstdc++-13-dev
  Setting up g++ (4:13.2.0-7ubuntu1) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode

ということで、g++ がシステムのデフォルトC++コンパイラとして設定されました

次にcmakeのインストールログで重要な部分を抜粋します

The following NEW packages will be installed:
  cmake cmake-data cpp cpp-13 cpp-13-x86-64-linux-gnu cpp-x86-64-linux-gnu gcc gcc-13 gcc-13-base
  gcc-13-x86-64-linux-gnu gcc-x86-64-linux-gnu libaom3 libarchive13t64 libasan8 libatomic1 libc-dev-bin
  libc-devtools libc6-dev libcc1-0 libcrypt-dev libde265-0 libgcc-13-dev libgd3 libgomp1
  ...
3 upgraded, 44 newly installed, 0 to remove and 165 not upgraded.
Need to get 77.4 MB of archives.
After this operation, 232 MB of additional disk space will be used.

Setting up gcc-13-x86-64-linux-gnu (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-13 (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-x86-64-linux-gnu (4:13.2.0-7ubuntu1) ...
Setting up gcc (4:13.2.0-7ubuntu1) ...

はい、このログより、cmakeをインストールしただけで GCC 13.3.0 が丸ごと新規いストールされたことがわかります

STEP3. conda仮想環境を作る

さて、次にPythonアプリケーションの実行環境としてcondaで仮想環境を作りましょう

conda create -n example_env python=3.10.0
conda init bash
source ~/.bashrc
conda activate example_env

これで example_env というconda仮想環境ができました

さて、次はこの環境にはいって、 dlib を pip でインストールしましょう

STEP4. dlibをpipインストール(+ビルド)する

インストールはいたって簡単で、以下のようにします

conda activate example_env
pip install dlib

ただ、ここでは、何が起こってるか詳細に把握するため以下のようにして詳細なログを見られるように dlib をインストールしましょう。

conda activate example_env
# dlibのビルドログを詳細に見る
pip install dlib --verbose --force-reinstall --no-cache-dir

「CMake is not installed on your system!」みたいなのがでたらSTEP2を忘れてますので、cmakeをしっかりシステムにいれておきましょう

さて、dlibをビルドすると、ログに以下のような出力がみられます

-- The C compiler identification is GNU 13.3.0
-- The CXX compiler identification is GNU 13.3.0
-- Check for working C compiler: /usr/bin/cc - skipped
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Found PythonInterp: /home/mlu/anaconda3/envs/example_env/bin/python3.10
-- Found PythonLibs: /home/mlu/anaconda3/envs/example_env/lib/libpython3.10.so
/usr/include/c++/13/new:128:26: note: in a call to allocation function 'operator new []' declared here
128 | *GLIBCXX*NODISCARD void* operator new[](std::size_t) *GLIBCXX*THROW (std::bad_alloc)

つまりどういうことかというと、
conda環境でpip installしているにも関わらず

  • コンパイラ: システムの/usr/bin/cc/usr/bin/c++(GCC 13.3.0)を使用
  • C++標準ライブラリ: システムの/usr/include/c++/13/ヘッダーを使用
  • Python環境: conda環境内のPythonライブラリを使用

つまり、dlibは

  • ビルドツール(コンパイラ)→システムのコンパイラを使っている
  • 実行環境(Python)→conda環境をつかう

ということになります

まとめると「GLIBCXX_x.x.x not found が発生するカラクリ」とは

システムの新しいGLIBCXX_3.4.32に依存するバイナリが、conda環境の古いlibstdc++で実行される エラーとなっていた。

これって結構落とし穴ですよね。

ていうか、ビルドはシステムで実行がcondaで、それぞれまったく連携していないライブラリが参照されるっていう点がなんともですね。

そもそも conda 環境とは何なのか?

condaは「隔離された実行環境」を目指してつくられており、完全なOSではないが、独自のライブラリセットを持ち、実行時は環境内のライブラリを優先使用します。前述のとおりcondaの中には libstdc++ が含まれているが、これはシステムとは無関係で、conda-forgeで独自にビルドされたパッケージであるため、システム側のライブラリとはバージョン連携も全くしていません。

そもそもGLIBCXXとは何か?

libstdc++内のABI(Application Binary Interface)バージョンで、
GLIBCXX_3.4.32のような形式であらわされます。新しい機能が追加されるたびに番号が増えていきます。

たとえば以下はGCCのバージョンとの大まかな対応関係です

GCC 11 → GLIBCXX_3.4.29まで
GCC 12 → GLIBCXX_3.4.30まで
GCC 13 → GLIBCXX_3.4.32まで
GCC 14 → GLIBCXX_3.4.33まで

そもそもlibstdcxx-ngとは何か?

libstdcxx-ngはcondaパッケージ名で、conda版のGNU C++標準ライブラリ(libstdc++)の実体です

バージョン番号(例:13, 14, 15)はGCCのメジャーバージョンに対応します

GCCバージョンと libstdcxx-ng(conda版のC++標準ライブラリ) とGLIBCXX_ の対応は?

まとめるとバージョン対応は以下のようになります
GCC 9 → libstdcxx-ng 9 → GLIBCXX_3.4.26まで
GCC 11 → libstdcxx-ng 11 → GLIBCXX_3.4.29まで
GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

実際にシステムとcondaの差分を確認する

さて、すれ違う原理がわかったところで実際に確認してみましょう

conda側のC++標準ライブラリについて調べる

まず、conda側のlibstdcxxのバージョンをみてみましょう。

$ conda list | grep -E "(gcc|libstdcxx)"

_libgcc_mutex             0.1                        main
libgcc-ng                 11.2.0               h1234567_1
libstdcxx-ng              11.2.0               h1234567_1

はい、ここからわかるとおりcondaにはlibstdcxx-ng 11.2.0 が入っていました。これは GCC 11.2.0のビルド済C++標準ライブラリですね。

さらにGLIBCXXのバージョンをみてみましょう

$ strings ~/anaconda3/lib/libstdc++.so.6 | grep GLIBCXX | tail -5

_ZNKSs15_M_check_lengthEmmPKc@@GLIBCXX_3.4.5
_ZNKSt14basic_ifstreamIwSt11char_traitsIwEE7is_openEv@GLIBCXX_3.4
_ZNSs4_Rep26_M_set_length_and_sharableEm@@GLIBCXX_3.4.5
GLIBCXX_3.4.26
_ZNKSs11_M_disjunctEPKc@GLIBCXX_3.4

GLIBCXX_3.4.26 ですね。

ここで最初のエラーメッセージを思い出しましょう、

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「GLIBCXX_3.4.32 がみつからん」といっていますね。

そりゃそうです、conda側はGLIBCXX_3.4.26なのですから。

これが原因ですね。

システム側のC++標準ライブラリについて調べる

では件のdlib(つまり/home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)にリンクしてるC++標準ライブラリを調べてみましょう

# ここでは $CONDA_PREFIXは/home/mlu/anaconda3/envs/example_env です
$ldd $CONDA_PREFIX/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so | grep libstdc++

        libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f9085cab000)

/lib/x86_64-linux-gnu/libstdc++.so.6って出ていますね。やはりdlibはシステムのlibstdc++にリンクされていましたね。conda環境の$CONDA_PREFIX/lib/libstdc++.so.6にリンクされているわけでは無いことがハッキリしました。

で、システム側のGLIBCXXを調べてみるとちゃんとシステム側には GLIBCXX_3.4.32 がありました。

strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX_3.4.32

GLIBCXX_3.4.32

(または strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX でシステムのlibstdc++のGLIBCXX一覧を表示させられます)

最後にもう一度、直し方

本問題について、冒頭で直し方を書きました

conda install -c conda-forge libstdcxx-ng

これでconda内のC++標準ライブラリが最新になりますが、

GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

ということで、conda内のC++標準ライブラリはまぁ GCC 13 の標準ライブラリがあればこと足りるということなので最新版というより以下のようにGCC13が入るようにすればOKということになります

conda install -c conda-forge libstdcxx-ng=13

まとめ

今回は、Pythonパッケージのdlibにおいて、「ビルド環境と実行環境でライブラリバージョンが異なる」というdependency hellの実例と原因と対策について解説しました。
すこし古いAnacondaをいれたせいで、そこに備わっていたC++標準ライブラリも古く、逆にシステム側は新しい標準ライブラリが入っており、システム側でビルドしてしまった(というか勝手にそうなる)がためにconda環境では動かないという問題に直面しました。

PythonパッケージはLinux,GCC のようなC++層のビルドを伴うものが多く、このような依存関係問題がよく発生します。Pure Pythonだけでも結構依存関係は面倒ですが、システム層(今回でいえばlibstdcppライブラリ)のビルドでの依存関係の問題がでると「あー面倒」となりがちですが、その発生原理やビルドやリンクのメカニズムを知っていると、地に足のついたトラブル対処ができるとおもいます。逆にこのあたりをウヤムヤにすると、さらなるdependency hell に陥ることがありますので、本稿がそういったお悩み解決のお役にたてれば幸いです!

では、また次回おあいしましょう!

Read more

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング