システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは!

先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

本稿では、どうしたらこのエラーを直せるか、だけでなく、なぜこのエラーが発生してしまうのかを解説いたします。

まず、直し方から

まず直し方ですが、以下のコマンドでエラーを解消することができます。

conda install -c conda-forge libstdcxx-ng

GLIBCXX_x.x.x not found が発生するカラクリ

実際の環境構築、パッケージのビルド・インストールシーンでこの問題が発生するメカニズムを明らかにしたいとおもいます

STEP1. まずAnacondaのインストールからみていこう

Anacondaは以下のようにインストールしました。あえて少し古いAnacondaをつかっています。

# anaconda インストール
wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

bash Anaconda3-2024.02-1-Linux-x86_64.sh -b

echo "export PATH=~/anaconda3/bin:\$PATH" >> ~/.bashrc
source ~/.bashrc


これでAnacondaはインストールできました。

STEP2.dlibのインストールに必要なcmakeを入れる

あとでdlibをインストールしますがdlibはPythonパッケージですが、インストール時にバイナリがビルドされますので、そのビルドができるようにシステムにcmakeを入れておきます

sudo apt-get update
sudo apt install -y build-essential
sudo apt-get install -y cmake

build-essential パッケージのインストールでは、

The following NEW packages will be installed:
  build-essential g++ g++-13 libstdc++-13-dev
  Setting up g++ (4:13.2.0-7ubuntu1) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode

ということで、g++ がシステムのデフォルトC++コンパイラとして設定されました

次にcmakeのインストールログで重要な部分を抜粋します

The following NEW packages will be installed:
  cmake cmake-data cpp cpp-13 cpp-13-x86-64-linux-gnu cpp-x86-64-linux-gnu gcc gcc-13 gcc-13-base
  gcc-13-x86-64-linux-gnu gcc-x86-64-linux-gnu libaom3 libarchive13t64 libasan8 libatomic1 libc-dev-bin
  libc-devtools libc6-dev libcc1-0 libcrypt-dev libde265-0 libgcc-13-dev libgd3 libgomp1
  ...
3 upgraded, 44 newly installed, 0 to remove and 165 not upgraded.
Need to get 77.4 MB of archives.
After this operation, 232 MB of additional disk space will be used.

Setting up gcc-13-x86-64-linux-gnu (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-13 (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-x86-64-linux-gnu (4:13.2.0-7ubuntu1) ...
Setting up gcc (4:13.2.0-7ubuntu1) ...

はい、このログより、cmakeをインストールしただけで GCC 13.3.0 が丸ごと新規いストールされたことがわかります

STEP3. conda仮想環境を作る

さて、次にPythonアプリケーションの実行環境としてcondaで仮想環境を作りましょう

conda create -n example_env python=3.10.0
conda init bash
source ~/.bashrc
conda activate example_env

これで example_env というconda仮想環境ができました

さて、次はこの環境にはいって、 dlib を pip でインストールしましょう

STEP4. dlibをpipインストール(+ビルド)する

インストールはいたって簡単で、以下のようにします

conda activate example_env
pip install dlib

ただ、ここでは、何が起こってるか詳細に把握するため以下のようにして詳細なログを見られるように dlib をインストールしましょう。

conda activate example_env
# dlibのビルドログを詳細に見る
pip install dlib --verbose --force-reinstall --no-cache-dir

「CMake is not installed on your system!」みたいなのがでたらSTEP2を忘れてますので、cmakeをしっかりシステムにいれておきましょう

さて、dlibをビルドすると、ログに以下のような出力がみられます

-- The C compiler identification is GNU 13.3.0
-- The CXX compiler identification is GNU 13.3.0
-- Check for working C compiler: /usr/bin/cc - skipped
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Found PythonInterp: /home/mlu/anaconda3/envs/example_env/bin/python3.10
-- Found PythonLibs: /home/mlu/anaconda3/envs/example_env/lib/libpython3.10.so
/usr/include/c++/13/new:128:26: note: in a call to allocation function 'operator new []' declared here
128 | *GLIBCXX*NODISCARD void* operator new[](std::size_t) *GLIBCXX*THROW (std::bad_alloc)

つまりどういうことかというと、
conda環境でpip installしているにも関わらず

  • コンパイラ: システムの/usr/bin/cc/usr/bin/c++(GCC 13.3.0)を使用
  • C++標準ライブラリ: システムの/usr/include/c++/13/ヘッダーを使用
  • Python環境: conda環境内のPythonライブラリを使用

つまり、dlibは

  • ビルドツール(コンパイラ)→システムのコンパイラを使っている
  • 実行環境(Python)→conda環境をつかう

ということになります

まとめると「GLIBCXX_x.x.x not found が発生するカラクリ」とは

システムの新しいGLIBCXX_3.4.32に依存するバイナリが、conda環境の古いlibstdc++で実行される エラーとなっていた。

これって結構落とし穴ですよね。

ていうか、ビルドはシステムで実行がcondaで、それぞれまったく連携していないライブラリが参照されるっていう点がなんともですね。

そもそも conda 環境とは何なのか?

condaは「隔離された実行環境」を目指してつくられており、完全なOSではないが、独自のライブラリセットを持ち、実行時は環境内のライブラリを優先使用します。前述のとおりcondaの中には libstdc++ が含まれているが、これはシステムとは無関係で、conda-forgeで独自にビルドされたパッケージであるため、システム側のライブラリとはバージョン連携も全くしていません。

そもそもGLIBCXXとは何か?

libstdc++内のABI(Application Binary Interface)バージョンで、
GLIBCXX_3.4.32のような形式であらわされます。新しい機能が追加されるたびに番号が増えていきます。

たとえば以下はGCCのバージョンとの大まかな対応関係です

GCC 11 → GLIBCXX_3.4.29まで
GCC 12 → GLIBCXX_3.4.30まで
GCC 13 → GLIBCXX_3.4.32まで
GCC 14 → GLIBCXX_3.4.33まで

そもそもlibstdcxx-ngとは何か?

libstdcxx-ngはcondaパッケージ名で、conda版のGNU C++標準ライブラリ(libstdc++)の実体です

バージョン番号(例:13, 14, 15)はGCCのメジャーバージョンに対応します

GCCバージョンと libstdcxx-ng(conda版のC++標準ライブラリ) とGLIBCXX_ の対応は?

まとめるとバージョン対応は以下のようになります
GCC 9 → libstdcxx-ng 9 → GLIBCXX_3.4.26まで
GCC 11 → libstdcxx-ng 11 → GLIBCXX_3.4.29まで
GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

実際にシステムとcondaの差分を確認する

さて、すれ違う原理がわかったところで実際に確認してみましょう

conda側のC++標準ライブラリについて調べる

まず、conda側のlibstdcxxのバージョンをみてみましょう。

$ conda list | grep -E "(gcc|libstdcxx)"

_libgcc_mutex             0.1                        main
libgcc-ng                 11.2.0               h1234567_1
libstdcxx-ng              11.2.0               h1234567_1

はい、ここからわかるとおりcondaにはlibstdcxx-ng 11.2.0 が入っていました。これは GCC 11.2.0のビルド済C++標準ライブラリですね。

さらにGLIBCXXのバージョンをみてみましょう

$ strings ~/anaconda3/lib/libstdc++.so.6 | grep GLIBCXX | tail -5

_ZNKSs15_M_check_lengthEmmPKc@@GLIBCXX_3.4.5
_ZNKSt14basic_ifstreamIwSt11char_traitsIwEE7is_openEv@GLIBCXX_3.4
_ZNSs4_Rep26_M_set_length_and_sharableEm@@GLIBCXX_3.4.5
GLIBCXX_3.4.26
_ZNKSs11_M_disjunctEPKc@GLIBCXX_3.4

GLIBCXX_3.4.26 ですね。

ここで最初のエラーメッセージを思い出しましょう、

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「GLIBCXX_3.4.32 がみつからん」といっていますね。

そりゃそうです、conda側はGLIBCXX_3.4.26なのですから。

これが原因ですね。

システム側のC++標準ライブラリについて調べる

では件のdlib(つまり/home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)にリンクしてるC++標準ライブラリを調べてみましょう

# ここでは $CONDA_PREFIXは/home/mlu/anaconda3/envs/example_env です
$ldd $CONDA_PREFIX/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so | grep libstdc++

        libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f9085cab000)

/lib/x86_64-linux-gnu/libstdc++.so.6って出ていますね。やはりdlibはシステムのlibstdc++にリンクされていましたね。conda環境の$CONDA_PREFIX/lib/libstdc++.so.6にリンクされているわけでは無いことがハッキリしました。

で、システム側のGLIBCXXを調べてみるとちゃんとシステム側には GLIBCXX_3.4.32 がありました。

strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX_3.4.32

GLIBCXX_3.4.32

(または strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX でシステムのlibstdc++のGLIBCXX一覧を表示させられます)

最後にもう一度、直し方

本問題について、冒頭で直し方を書きました

conda install -c conda-forge libstdcxx-ng

これでconda内のC++標準ライブラリが最新になりますが、

GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

ということで、conda内のC++標準ライブラリはまぁ GCC 13 の標準ライブラリがあればこと足りるということなので最新版というより以下のようにGCC13が入るようにすればOKということになります

conda install -c conda-forge libstdcxx-ng=13

まとめ

今回は、Pythonパッケージのdlibにおいて、「ビルド環境と実行環境でライブラリバージョンが異なる」というdependency hellの実例と原因と対策について解説しました。
すこし古いAnacondaをいれたせいで、そこに備わっていたC++標準ライブラリも古く、逆にシステム側は新しい標準ライブラリが入っており、システム側でビルドしてしまった(というか勝手にそうなる)がためにconda環境では動かないという問題に直面しました。

PythonパッケージはLinux,GCC のようなC++層のビルドを伴うものが多く、このような依存関係問題がよく発生します。Pure Pythonだけでも結構依存関係は面倒ですが、システム層(今回でいえばlibstdcppライブラリ)のビルドでの依存関係の問題がでると「あー面倒」となりがちですが、その発生原理やビルドやリンクのメカニズムを知っていると、地に足のついたトラブル対処ができるとおもいます。逆にこのあたりをウヤムヤにすると、さらなるdependency hell に陥ることがありますので、本稿がそういったお悩み解決のお役にたてれば幸いです!

では、また次回おあいしましょう!

Read more

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部
LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

こんにちは! 本日は LLMサービスの自社構築する際の推論基盤プロビジョニング、GPUプロビジョニングについて数回にわけて解説いたします。 はじめに LLMの進化に伴い、ChatGPTやClaudeといったパブリックなLLMの活用は企業においても急速に広がってきました。しかし先進的な企業はこれらの汎用LLMに加えて、「領域特化型」「ドメイン特化型」といった専用LLMの構築へと歩みを進めています。こうした動きの背景には、企業固有の専門知識への対応力強化と情報セキュリティの確保という二つの重要なニーズがあります。 一般的なパブリックLLMでは対応できない企業固有の専門知識や機密情報の取り扱いが必要なケースが増えているため、自社LLMの構築や自社サーバーでの運用を検討する企業が急増しています。特に金融、医療、製造、法務といった専門性の高い領域では、業界特化型の独自LLMが競争優位性をもたらすと認識されています。 しかし、業界特化型のLLMを自社で運用することは簡単ではありません。自社運用を決断した場合、まず最初に取り組むべきは適切な推論環境の整備です。オンプレミス環境を構築するに

By Qualiteg コンサルティング
Startup JAPAN 2025 に出展いたしました

Startup JAPAN 2025 に出展いたしました

こんにちは! 2025年5月8日(木)-5月9日(金)に東京ビッグサイトで開催された Startup JAPAN 2025 に出展いたしましたので、簡単にレポートいたします😊 開催概要 出展概要 今回は当社が開発するアバター動画生成AI「MotionVox™」を中心に出展させていただきました! 展示会について簡単にふりかえってみたいとおもいます 当社ブース 当社ブースはこんなかんじです。 今回は、ブースというか、このイーゼルのような雰囲気の木枠にポスターをくっつけるというスタイルでの展示方式でした。 こういう方式ははじめてなので斬新でした。おそらくこの方式で相当なコストダウンを図れておりスタートアップにはうれしいですね。セットアップも数分で終わりました。 会場 今回の会場はビッグサイトの南ホールでした。南ホールは、ビッグサイト入口からすぐそこなので駅から会場までたいして歩かず、疲れずに行くことができアクセスがとても良いです。 ホールは広めですが、ところせましと400社の出展会社がひしめきあっておりスタートアップの勢いのある会場となっており

By Qualiteg ビジネス開発本部 | マーケティング部