システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは!

先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

本稿では、どうしたらこのエラーを直せるか、だけでなく、なぜこのエラーが発生してしまうのかを解説いたします。

まず、直し方から

まず直し方ですが、以下のコマンドでエラーを解消することができます。

conda install -c conda-forge libstdcxx-ng

GLIBCXX_x.x.x not found が発生するカラクリ

実際の環境構築、パッケージのビルド・インストールシーンでこの問題が発生するメカニズムを明らかにしたいとおもいます

STEP1. まずAnacondaのインストールからみていこう

Anacondaは以下のようにインストールしました。あえて少し古いAnacondaをつかっています。

# anaconda インストール
wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

bash Anaconda3-2024.02-1-Linux-x86_64.sh -b

echo "export PATH=~/anaconda3/bin:\$PATH" >> ~/.bashrc
source ~/.bashrc


これでAnacondaはインストールできました。

STEP2.dlibのインストールに必要なcmakeを入れる

あとでdlibをインストールしますがdlibはPythonパッケージですが、インストール時にバイナリがビルドされますので、そのビルドができるようにシステムにcmakeを入れておきます

sudo apt-get update
sudo apt install -y build-essential
sudo apt-get install -y cmake

build-essential パッケージのインストールでは、

The following NEW packages will be installed:
  build-essential g++ g++-13 libstdc++-13-dev
  Setting up g++ (4:13.2.0-7ubuntu1) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode

ということで、g++ がシステムのデフォルトC++コンパイラとして設定されました

次にcmakeのインストールログで重要な部分を抜粋します

The following NEW packages will be installed:
  cmake cmake-data cpp cpp-13 cpp-13-x86-64-linux-gnu cpp-x86-64-linux-gnu gcc gcc-13 gcc-13-base
  gcc-13-x86-64-linux-gnu gcc-x86-64-linux-gnu libaom3 libarchive13t64 libasan8 libatomic1 libc-dev-bin
  libc-devtools libc6-dev libcc1-0 libcrypt-dev libde265-0 libgcc-13-dev libgd3 libgomp1
  ...
3 upgraded, 44 newly installed, 0 to remove and 165 not upgraded.
Need to get 77.4 MB of archives.
After this operation, 232 MB of additional disk space will be used.

Setting up gcc-13-x86-64-linux-gnu (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-13 (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-x86-64-linux-gnu (4:13.2.0-7ubuntu1) ...
Setting up gcc (4:13.2.0-7ubuntu1) ...

はい、このログより、cmakeをインストールしただけで GCC 13.3.0 が丸ごと新規いストールされたことがわかります

STEP3. conda仮想環境を作る

さて、次にPythonアプリケーションの実行環境としてcondaで仮想環境を作りましょう

conda create -n example_env python=3.10.0
conda init bash
source ~/.bashrc
conda activate example_env

これで example_env というconda仮想環境ができました

さて、次はこの環境にはいって、 dlib を pip でインストールしましょう

STEP4. dlibをpipインストール(+ビルド)する

インストールはいたって簡単で、以下のようにします

conda activate example_env
pip install dlib

ただ、ここでは、何が起こってるか詳細に把握するため以下のようにして詳細なログを見られるように dlib をインストールしましょう。

conda activate example_env
# dlibのビルドログを詳細に見る
pip install dlib --verbose --force-reinstall --no-cache-dir

「CMake is not installed on your system!」みたいなのがでたらSTEP2を忘れてますので、cmakeをしっかりシステムにいれておきましょう

さて、dlibをビルドすると、ログに以下のような出力がみられます

-- The C compiler identification is GNU 13.3.0
-- The CXX compiler identification is GNU 13.3.0
-- Check for working C compiler: /usr/bin/cc - skipped
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Found PythonInterp: /home/mlu/anaconda3/envs/example_env/bin/python3.10
-- Found PythonLibs: /home/mlu/anaconda3/envs/example_env/lib/libpython3.10.so
/usr/include/c++/13/new:128:26: note: in a call to allocation function 'operator new []' declared here
128 | *GLIBCXX*NODISCARD void* operator new[](std::size_t) *GLIBCXX*THROW (std::bad_alloc)

つまりどういうことかというと、
conda環境でpip installしているにも関わらず

  • コンパイラ: システムの/usr/bin/cc/usr/bin/c++(GCC 13.3.0)を使用
  • C++標準ライブラリ: システムの/usr/include/c++/13/ヘッダーを使用
  • Python環境: conda環境内のPythonライブラリを使用

つまり、dlibは

  • ビルドツール(コンパイラ)→システムのコンパイラを使っている
  • 実行環境(Python)→conda環境をつかう

ということになります

まとめると「GLIBCXX_x.x.x not found が発生するカラクリ」とは

システムの新しいGLIBCXX_3.4.32に依存するバイナリが、conda環境の古いlibstdc++で実行される エラーとなっていた。

これって結構落とし穴ですよね。

ていうか、ビルドはシステムで実行がcondaで、それぞれまったく連携していないライブラリが参照されるっていう点がなんともですね。

そもそも conda 環境とは何なのか?

condaは「隔離された実行環境」を目指してつくられており、完全なOSではないが、独自のライブラリセットを持ち、実行時は環境内のライブラリを優先使用します。前述のとおりcondaの中には libstdc++ が含まれているが、これはシステムとは無関係で、conda-forgeで独自にビルドされたパッケージであるため、システム側のライブラリとはバージョン連携も全くしていません。

そもそもGLIBCXXとは何か?

libstdc++内のABI(Application Binary Interface)バージョンで、
GLIBCXX_3.4.32のような形式であらわされます。新しい機能が追加されるたびに番号が増えていきます。

たとえば以下はGCCのバージョンとの大まかな対応関係です

GCC 11 → GLIBCXX_3.4.29まで
GCC 12 → GLIBCXX_3.4.30まで
GCC 13 → GLIBCXX_3.4.32まで
GCC 14 → GLIBCXX_3.4.33まで

そもそもlibstdcxx-ngとは何か?

libstdcxx-ngはcondaパッケージ名で、conda版のGNU C++標準ライブラリ(libstdc++)の実体です

バージョン番号(例:13, 14, 15)はGCCのメジャーバージョンに対応します

GCCバージョンと libstdcxx-ng(conda版のC++標準ライブラリ) とGLIBCXX_ の対応は?

まとめるとバージョン対応は以下のようになります
GCC 9 → libstdcxx-ng 9 → GLIBCXX_3.4.26まで
GCC 11 → libstdcxx-ng 11 → GLIBCXX_3.4.29まで
GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

実際にシステムとcondaの差分を確認する

さて、すれ違う原理がわかったところで実際に確認してみましょう

conda側のC++標準ライブラリについて調べる

まず、conda側のlibstdcxxのバージョンをみてみましょう。

$ conda list | grep -E "(gcc|libstdcxx)"

_libgcc_mutex             0.1                        main
libgcc-ng                 11.2.0               h1234567_1
libstdcxx-ng              11.2.0               h1234567_1

はい、ここからわかるとおりcondaにはlibstdcxx-ng 11.2.0 が入っていました。これは GCC 11.2.0のビルド済C++標準ライブラリですね。

さらにGLIBCXXのバージョンをみてみましょう

$ strings ~/anaconda3/lib/libstdc++.so.6 | grep GLIBCXX | tail -5

_ZNKSs15_M_check_lengthEmmPKc@@GLIBCXX_3.4.5
_ZNKSt14basic_ifstreamIwSt11char_traitsIwEE7is_openEv@GLIBCXX_3.4
_ZNSs4_Rep26_M_set_length_and_sharableEm@@GLIBCXX_3.4.5
GLIBCXX_3.4.26
_ZNKSs11_M_disjunctEPKc@GLIBCXX_3.4

GLIBCXX_3.4.26 ですね。

ここで最初のエラーメッセージを思い出しましょう、

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「GLIBCXX_3.4.32 がみつからん」といっていますね。

そりゃそうです、conda側はGLIBCXX_3.4.26なのですから。

これが原因ですね。

システム側のC++標準ライブラリについて調べる

では件のdlib(つまり/home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)にリンクしてるC++標準ライブラリを調べてみましょう

# ここでは $CONDA_PREFIXは/home/mlu/anaconda3/envs/example_env です
$ldd $CONDA_PREFIX/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so | grep libstdc++

        libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f9085cab000)

/lib/x86_64-linux-gnu/libstdc++.so.6って出ていますね。やはりdlibはシステムのlibstdc++にリンクされていましたね。conda環境の$CONDA_PREFIX/lib/libstdc++.so.6にリンクされているわけでは無いことがハッキリしました。

で、システム側のGLIBCXXを調べてみるとちゃんとシステム側には GLIBCXX_3.4.32 がありました。

strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX_3.4.32

GLIBCXX_3.4.32

(または strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX でシステムのlibstdc++のGLIBCXX一覧を表示させられます)

最後にもう一度、直し方

本問題について、冒頭で直し方を書きました

conda install -c conda-forge libstdcxx-ng

これでconda内のC++標準ライブラリが最新になりますが、

GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

ということで、conda内のC++標準ライブラリはまぁ GCC 13 の標準ライブラリがあればこと足りるということなので最新版というより以下のようにGCC13が入るようにすればOKということになります

conda install -c conda-forge libstdcxx-ng=13

まとめ

今回は、Pythonパッケージのdlibにおいて、「ビルド環境と実行環境でライブラリバージョンが異なる」というdependency hellの実例と原因と対策について解説しました。
すこし古いAnacondaをいれたせいで、そこに備わっていたC++標準ライブラリも古く、逆にシステム側は新しい標準ライブラリが入っており、システム側でビルドしてしまった(というか勝手にそうなる)がためにconda環境では動かないという問題に直面しました。

PythonパッケージはLinux,GCC のようなC++層のビルドを伴うものが多く、このような依存関係問題がよく発生します。Pure Pythonだけでも結構依存関係は面倒ですが、システム層(今回でいえばlibstdcppライブラリ)のビルドでの依存関係の問題がでると「あー面倒」となりがちですが、その発生原理やビルドやリンクのメカニズムを知っていると、地に足のついたトラブル対処ができるとおもいます。逆にこのあたりをウヤムヤにすると、さらなるdependency hell に陥ることがありますので、本稿がそういったお悩み解決のお役にたてれば幸いです!

では、また次回おあいしましょう!

Read more

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング