システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは!

先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

本稿では、どうしたらこのエラーを直せるか、だけでなく、なぜこのエラーが発生してしまうのかを解説いたします。

まず、直し方から

まず直し方ですが、以下のコマンドでエラーを解消することができます。

conda install -c conda-forge libstdcxx-ng

GLIBCXX_x.x.x not found が発生するカラクリ

実際の環境構築、パッケージのビルド・インストールシーンでこの問題が発生するメカニズムを明らかにしたいとおもいます

STEP1. まずAnacondaのインストールからみていこう

Anacondaは以下のようにインストールしました。あえて少し古いAnacondaをつかっています。

# anaconda インストール
wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

bash Anaconda3-2024.02-1-Linux-x86_64.sh -b

echo "export PATH=~/anaconda3/bin:\$PATH" >> ~/.bashrc
source ~/.bashrc


これでAnacondaはインストールできました。

STEP2.dlibのインストールに必要なcmakeを入れる

あとでdlibをインストールしますがdlibはPythonパッケージですが、インストール時にバイナリがビルドされますので、そのビルドができるようにシステムにcmakeを入れておきます

sudo apt-get update
sudo apt install -y build-essential
sudo apt-get install -y cmake

build-essential パッケージのインストールでは、

The following NEW packages will be installed:
  build-essential g++ g++-13 libstdc++-13-dev
  Setting up g++ (4:13.2.0-7ubuntu1) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode

ということで、g++ がシステムのデフォルトC++コンパイラとして設定されました

次にcmakeのインストールログで重要な部分を抜粋します

The following NEW packages will be installed:
  cmake cmake-data cpp cpp-13 cpp-13-x86-64-linux-gnu cpp-x86-64-linux-gnu gcc gcc-13 gcc-13-base
  gcc-13-x86-64-linux-gnu gcc-x86-64-linux-gnu libaom3 libarchive13t64 libasan8 libatomic1 libc-dev-bin
  libc-devtools libc6-dev libcc1-0 libcrypt-dev libde265-0 libgcc-13-dev libgd3 libgomp1
  ...
3 upgraded, 44 newly installed, 0 to remove and 165 not upgraded.
Need to get 77.4 MB of archives.
After this operation, 232 MB of additional disk space will be used.

Setting up gcc-13-x86-64-linux-gnu (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-13 (13.3.0-6ubuntu2~24.04) ...
Setting up gcc-x86-64-linux-gnu (4:13.2.0-7ubuntu1) ...
Setting up gcc (4:13.2.0-7ubuntu1) ...

はい、このログより、cmakeをインストールしただけで GCC 13.3.0 が丸ごと新規いストールされたことがわかります

STEP3. conda仮想環境を作る

さて、次にPythonアプリケーションの実行環境としてcondaで仮想環境を作りましょう

conda create -n example_env python=3.10.0
conda init bash
source ~/.bashrc
conda activate example_env

これで example_env というconda仮想環境ができました

さて、次はこの環境にはいって、 dlib を pip でインストールしましょう

STEP4. dlibをpipインストール(+ビルド)する

インストールはいたって簡単で、以下のようにします

conda activate example_env
pip install dlib

ただ、ここでは、何が起こってるか詳細に把握するため以下のようにして詳細なログを見られるように dlib をインストールしましょう。

conda activate example_env
# dlibのビルドログを詳細に見る
pip install dlib --verbose --force-reinstall --no-cache-dir

「CMake is not installed on your system!」みたいなのがでたらSTEP2を忘れてますので、cmakeをしっかりシステムにいれておきましょう

さて、dlibをビルドすると、ログに以下のような出力がみられます

-- The C compiler identification is GNU 13.3.0
-- The CXX compiler identification is GNU 13.3.0
-- Check for working C compiler: /usr/bin/cc - skipped
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Found PythonInterp: /home/mlu/anaconda3/envs/example_env/bin/python3.10
-- Found PythonLibs: /home/mlu/anaconda3/envs/example_env/lib/libpython3.10.so
/usr/include/c++/13/new:128:26: note: in a call to allocation function 'operator new []' declared here
128 | *GLIBCXX*NODISCARD void* operator new[](std::size_t) *GLIBCXX*THROW (std::bad_alloc)

つまりどういうことかというと、
conda環境でpip installしているにも関わらず

  • コンパイラ: システムの/usr/bin/cc/usr/bin/c++(GCC 13.3.0)を使用
  • C++標準ライブラリ: システムの/usr/include/c++/13/ヘッダーを使用
  • Python環境: conda環境内のPythonライブラリを使用

つまり、dlibは

  • ビルドツール(コンパイラ)→システムのコンパイラを使っている
  • 実行環境(Python)→conda環境をつかう

ということになります

まとめると「GLIBCXX_x.x.x not found が発生するカラクリ」とは

システムの新しいGLIBCXX_3.4.32に依存するバイナリが、conda環境の古いlibstdc++で実行される エラーとなっていた。

これって結構落とし穴ですよね。

ていうか、ビルドはシステムで実行がcondaで、それぞれまったく連携していないライブラリが参照されるっていう点がなんともですね。

そもそも conda 環境とは何なのか?

condaは「隔離された実行環境」を目指してつくられており、完全なOSではないが、独自のライブラリセットを持ち、実行時は環境内のライブラリを優先使用します。前述のとおりcondaの中には libstdc++ が含まれているが、これはシステムとは無関係で、conda-forgeで独自にビルドされたパッケージであるため、システム側のライブラリとはバージョン連携も全くしていません。

そもそもGLIBCXXとは何か?

libstdc++内のABI(Application Binary Interface)バージョンで、
GLIBCXX_3.4.32のような形式であらわされます。新しい機能が追加されるたびに番号が増えていきます。

たとえば以下はGCCのバージョンとの大まかな対応関係です

GCC 11 → GLIBCXX_3.4.29まで
GCC 12 → GLIBCXX_3.4.30まで
GCC 13 → GLIBCXX_3.4.32まで
GCC 14 → GLIBCXX_3.4.33まで

そもそもlibstdcxx-ngとは何か?

libstdcxx-ngはcondaパッケージ名で、conda版のGNU C++標準ライブラリ(libstdc++)の実体です

バージョン番号(例:13, 14, 15)はGCCのメジャーバージョンに対応します

GCCバージョンと libstdcxx-ng(conda版のC++標準ライブラリ) とGLIBCXX_ の対応は?

まとめるとバージョン対応は以下のようになります
GCC 9 → libstdcxx-ng 9 → GLIBCXX_3.4.26まで
GCC 11 → libstdcxx-ng 11 → GLIBCXX_3.4.29まで
GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

実際にシステムとcondaの差分を確認する

さて、すれ違う原理がわかったところで実際に確認してみましょう

conda側のC++標準ライブラリについて調べる

まず、conda側のlibstdcxxのバージョンをみてみましょう。

$ conda list | grep -E "(gcc|libstdcxx)"

_libgcc_mutex             0.1                        main
libgcc-ng                 11.2.0               h1234567_1
libstdcxx-ng              11.2.0               h1234567_1

はい、ここからわかるとおりcondaにはlibstdcxx-ng 11.2.0 が入っていました。これは GCC 11.2.0のビルド済C++標準ライブラリですね。

さらにGLIBCXXのバージョンをみてみましょう

$ strings ~/anaconda3/lib/libstdc++.so.6 | grep GLIBCXX | tail -5

_ZNKSs15_M_check_lengthEmmPKc@@GLIBCXX_3.4.5
_ZNKSt14basic_ifstreamIwSt11char_traitsIwEE7is_openEv@GLIBCXX_3.4
_ZNSs4_Rep26_M_set_length_and_sharableEm@@GLIBCXX_3.4.5
GLIBCXX_3.4.26
_ZNKSs11_M_disjunctEPKc@GLIBCXX_3.4

GLIBCXX_3.4.26 ですね。

ここで最初のエラーメッセージを思い出しましょう、

ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)

「GLIBCXX_3.4.32 がみつからん」といっていますね。

そりゃそうです、conda側はGLIBCXX_3.4.26なのですから。

これが原因ですね。

システム側のC++標準ライブラリについて調べる

では件のdlib(つまり/home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so)にリンクしてるC++標準ライブラリを調べてみましょう

# ここでは $CONDA_PREFIXは/home/mlu/anaconda3/envs/example_env です
$ldd $CONDA_PREFIX/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so | grep libstdc++

        libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f9085cab000)

/lib/x86_64-linux-gnu/libstdc++.so.6って出ていますね。やはりdlibはシステムのlibstdc++にリンクされていましたね。conda環境の$CONDA_PREFIX/lib/libstdc++.so.6にリンクされているわけでは無いことがハッキリしました。

で、システム側のGLIBCXXを調べてみるとちゃんとシステム側には GLIBCXX_3.4.32 がありました。

strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX_3.4.32

GLIBCXX_3.4.32

(または strings /lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX でシステムのlibstdc++のGLIBCXX一覧を表示させられます)

最後にもう一度、直し方

本問題について、冒頭で直し方を書きました

conda install -c conda-forge libstdcxx-ng

これでconda内のC++標準ライブラリが最新になりますが、

GCC 12 → libstdcxx-ng 12 → GLIBCXX_3.4.30まで
GCC 13 → libstdcxx-ng 13 → GLIBCXX_3.4.32まで

ということで、conda内のC++標準ライブラリはまぁ GCC 13 の標準ライブラリがあればこと足りるということなので最新版というより以下のようにGCC13が入るようにすればOKということになります

conda install -c conda-forge libstdcxx-ng=13

まとめ

今回は、Pythonパッケージのdlibにおいて、「ビルド環境と実行環境でライブラリバージョンが異なる」というdependency hellの実例と原因と対策について解説しました。
すこし古いAnacondaをいれたせいで、そこに備わっていたC++標準ライブラリも古く、逆にシステム側は新しい標準ライブラリが入っており、システム側でビルドしてしまった(というか勝手にそうなる)がためにconda環境では動かないという問題に直面しました。

PythonパッケージはLinux,GCC のようなC++層のビルドを伴うものが多く、このような依存関係問題がよく発生します。Pure Pythonだけでも結構依存関係は面倒ですが、システム層(今回でいえばlibstdcppライブラリ)のビルドでの依存関係の問題がでると「あー面倒」となりがちですが、その発生原理やビルドやリンクのメカニズムを知っていると、地に足のついたトラブル対処ができるとおもいます。逆にこのあたりをウヤムヤにすると、さらなるdependency hell に陥ることがありますので、本稿がそういったお悩み解決のお役にたてれば幸いです!

では、また次回おあいしましょう!

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部