ONNX RuntimeのCUDAエラー「libcublasLt.so.11: cannot open shared object file」を解決する

ONNX RuntimeのCUDAエラー「libcublasLt.so.11: cannot open shared object file」を解決する
Photo by Evan Lee / Unsplash

こんにちは!
ONNX Runtimeを使用していると、以下のようなエラーに遭遇することがあります

[E:onnxruntime:Default, provider_bridge_ort.cc:1744 TryGetProviderInfo_CUDA] 
Failed to load library libonnxruntime_providers_cuda.so with error: 
libcublasLt.so.11: cannot open shared object file: No such file or directory

[W:onnxruntime:Default, onnxruntime_pybind_state.cc:870 CreateExecutionProviderInstance] 
Failed to create CUDAExecutionProvider.

このエラーは、GPUアクセラレーションが使えずCPUフォールバックで動作している状態を示しています。本記事では、この問題の原因調査から解決までのプロセスを詳しく解説します。

問題の症状

エラーが発生する状況

  • ONNX Runtimeでモデルを読み込む際に毎回警告が表示される
  • 画像処理や推論処理で処理時間が異常に長い(例:数秒以上)
  • onnxruntime-gpuをインストールしているのにGPUが使われない
  • プログラムを実行するたびに同じ警告が繰り返し表示される

パフォーマンスへの影響

# CPU実行時(エラー発生時)
Model A warmup time: 5.071s
Model B warmup time: 0.029s

# GPU実行時(正常時)の期待値
Model A warmup time: 0.5-1.0s  # 5-10倍高速化
Model B warmup time: 0.005-0.01s  # 3-5倍高速化

原因調査のプロセス

ステップ1: 環境の現状確認

まずは、ONNX RuntimeがGPUを認識できているか確認しましょう

# インストール済みパッケージの確認
pip list | grep onnx

出力例

onnx                     1.16.1
onnxruntime-gpu          1.18.0
# GPUの認識状況を確認
python -c "import onnxruntime; print(onnxruntime.get_device()); print(onnxruntime.get_available_providers())"

出力例

GPU
['TensorrtExecutionProvider', 'CUDAExecutionProvider',  'CPUExecutionProvider']

ステップ2: 問題の分析

この時点で興味深い状況が判明しました

  • onnxruntime.get_device()GPU(認識されている)
  • CUDAExecutionProviderが利用可能リストに含まれている
  • しかし実行時にはエラーが発生してCPUフォールバック

これは、ONNX Runtime自体はGPUを認識しているが、実行時に必要なCUDAライブラリが不足している状況を示しています。

ステップ3: バージョン不整合の特定

# システムのCUDAバージョン確認
nvcc --version
ls -la /usr/local/ | grep cuda

調査の結果

  • システムにはCUDA 12がインストール済み
  • ONNX RuntimeがCUDA 11のライブラリ(libcublasLt.so.11)を探している

ということでバージョン不整合が原因と特定できましたー

解決方法の検討

方法1: シンボリックリンク(リスクの評価)

当初、シンボリックリンクで解決することを検討しました

# CUDA 12のライブラリをCUDA 11として認識させる
sudo ln -s /lib/x86_64-linux-gnu/libcublasLt.so.12 /lib/x86_64-linux-gnu/libcublasLt.so.11

ただし、こんな付け焼刃でいいのか、リスクを考えてみます

  • メリット:手軽で追加インストール不要
  • リスク:ABI互換性の問題、他のCUDA 11依存アプリへの影響

そこで、しらべてみると、
onnxruntime-gpu 1.18.0は既にCUDA 12対応版であることが判明しました。
つまり、シンボリックリンクは同じCUDA 12系統内での対応となるため、リスクは小さいと判断できました

方法2: 完全な解決策の発見

ただし、このシンボリックリンクだけでは解決しなかったため、さらに調査を進めた結果、cuDNNの不足が判明しました。

ということで、最終的な解決方法です

★最終的な解決方法

ステップ1: cuDNNのインストール

conda install -c conda-forge cudnn=8.9.7.29 -y

このステップが最も重要でcuDNNがないとCUDAExecutionProviderが初期化できません。

ステップ2: シンボリックリンクの作成

# libcublasLt.so.11のシンボリックリンク作成
sudo ln -sf /usr/local/cuda-12/lib64/libcublasLt.so.12 \
            /usr/lib/x86_64-linux-gnu/libcublasLt.so.11

# libcublas.so.11のシンボリックリンク作成  
sudo ln -sf /usr/local/cuda-12/lib64/libcublas.so.12 \
            /usr/lib/x86_64-linux-gnu/libcublas.so.11

# ライブラリキャッシュの更新
sudo ldconfig

ステップ3: ONNX Runtimeの再インストール

# 既存のパッケージをアンインストール
pip uninstall onnxruntime onnxruntime-gpu -y

# GPU版をインストール
pip install onnxruntime-gpu==1.22.0

再インストール時に最新版がインストールされる可能性があるため、バージョン固定が推奨です

なぜシンボリックリンクだけでは不十分だったか

初回の試みでシンボリックリンクだけでは解決しなかった理由

  1. libcublasLt.so.11 → シンボリックリンクで解決した
  2. libcudnn.so.8不足していた
  3. その他のCUDA関連ライブラリ → 不完全

ということで、cuDNNのインストールが必須だったことが判明しました。

動作確認

GPUが使用されているか確認

import onnxruntime as ort

# テスト用のセッション作成
session = ort.InferenceSession(
    "your_model.onnx",
    providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)

# 実際に使用されているプロバイダーを確認
print("Active providers:", session.get_providers())
# 成功時の出力: ['CUDAExecutionProvider', 'CPUExecutionProvider']
# 失敗時の出力: ['CPUExecutionProvider']

パフォーマンステスト

import time
import onnxruntime as ort
import numpy as np

# モデル読み込み
session = ort.InferenceSession("model.onnx")

# ダミー入力データ
dummy_input = np.random.randn(1, 3, 224, 224).astype(np.float32)

# ウォームアップ
for _ in range(5):
    session.run(None, {"input": dummy_input})

# 実測
start = time.time()
for _ in range(100):
    session.run(None, {"input": dummy_input})
print(f"Average inference time: {(time.time() - start) / 100:.4f}s")

トラブルシューティング

デバッグ用チェックリスト

# 1. ONNX Runtimeのバージョン確認
python -c "import onnxruntime; print(onnxruntime.__version__)"

# 2. GPUの認識確認
python -c "import onnxruntime; print(onnxruntime.get_device())"

# 3. 利用可能なプロバイダー確認
python -c "import onnxruntime; print(onnxruntime.get_available_providers())"

# 4. CUDAのインストール確認
nvcc --version
ls -la /usr/local/ | grep cuda

# 5. 必要なライブラリの存在確認
ls -la /usr/lib/x86_64-linux-gnu/ | grep -E "libcublas|libcudnn"

# 6. 依存関係の確認
ldd $(python -c "import onnxruntime; print(onnxruntime.__file__)") | grep "not found"

完全な環境構築手順

requirements.txt

onnxruntime-gpu==1.22.0

setup.sh

#!/bin/bash

echo "=== ONNX Runtime GPU Setup ==="

# 0. 現状確認
echo "Current environment check:"
python -c "import onnxruntime; print('Version:', onnxruntime.__version__); print('Device:', onnxruntime.get_device())" 2>/dev/null || echo "ONNX Runtime not installed"

# 1. cuDNN のインストール
echo "Installing cuDNN..."
conda install -c conda-forge cudnn=8.9.7.29 -y

# 2. シンボリックリンクの作成
echo "Creating symbolic links..."
sudo ln -sf /usr/local/cuda-12/lib64/libcublasLt.so.12 \
            /usr/lib/x86_64-linux-gnu/libcublasLt.so.11
sudo ln -sf /usr/local/cuda-12/lib64/libcublas.so.12 \
            /usr/lib/x86_64-linux-gnu/libcublas.so.11

# 3. ライブラリキャッシュの更新
echo "Updating library cache..."
sudo ldconfig

# 4. ONNX Runtime のインストール
echo "Installing ONNX Runtime GPU..."
pip uninstall onnxruntime onnxruntime-gpu -y
pip install -r requirements.txt

# 5. 動作確認
echo "Verification:"
python -c "
import onnxruntime as ort
print('ONNX Runtime version:', ort.__version__)
print('Device:', ort.get_device())
print('Available providers:', ort.get_available_providers())
"

echo "Setup complete!"

まとめ

以下のような手順で解決にいたりました

  1. 初期診断:GPUは認識されているが実行時にエラー
  2. 原因特定:CUDA 11/12のバージョン不整合とcuDNNの不足
  3. 解決策:cuDNNインストール + シンボリックリンク + 再インストール

重要なのは、シンボリックリンクだけでは不十分で、cuDNNのインストールが必須だったという点ですね。この3ステップを正しい順序で実行することで、GPUアクセラレーションを有効化し、推論処理を2〜10倍高速化できます。
とくにCPUフォールバックを見逃すと、せっかくのGPUパワーを活かせないので、この警告がでたら、しっかり対応することが必要そうです

Read more

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

株式会社Qualitegは、2025年10月14日(火)~17日(金)に幕張メッセで開催される「CEATEC 2025」に出展いたします。今回の出展では、当社が開発したフォトリアリスティックAIアバター技術「MotionVox🄬」をはじめ、最新のAI技術とビジネスイノベーションソリューションをご紹介いたします。 出展概要 * 会期:2025年10月14日(火)~10月17日(金) * 会場:幕張メッセ * 出展エリア:ネクストジェネレーションパーク * ブース番号:ホール6 6H207 * CEATEC内特設サイト:https://www.ceatec.com/nj/exhibitor_detail_ja?id=1915 見どころ:最先端AI技術を体感できる特別展示 1. フォトリアルAIアバター「MotionVox🄬」 テキスト入力だけで、まるで本物の人間のような動画を生成できる革新的なAIアバターシステムです。 MotionVox🄬は自社開発している「Expression Aware🄬」技術により日本人の演者データを基に開発された、

By Qualiteg ニュース
その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは! 本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。 ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。 エラーメッセージの詳細 [E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load

By Qualiteg プロダクト開発部
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg コンサルティング
使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

こんにちは、株式会社Qualiteg コンサルティング部門です。 昨今、生成AIの急速な進化により、ソフトウェア開発の在り方が根本から変わりつつあります。2024年にはClaude、GPT-4、Geminiなどの大規模言語モデルがコード生成能力を飛躍的に向上させ、GitHub CopilotやCursor、Windsurf等の開発支援ツールが実際の開発現場で広く活用されるようになりました。さらに、Devin、OpenAI Canvas、Anthropic Claude Codingといった、より高度な自律的コーディング機能を持つAIエージェントも登場しています。 このような技術革新を背景に、当部門では今後のソフトウェア産業の構造変化について詳細な分析を行いました。本シリーズでは、特に注目すべき変化として、従来1000人月規模を要していた企業向けSaaSプラットフォームや、基幹システムが、AIエージェントを効果的に活用することで、わずか2-3名のチームが数日から数週間で実装可能になるという、開発生産性の劇的な向上について考察してまいります。 これは単なる効率化ではなく、ソフトウェア

By Qualiteg コンサルティング