GPUメモリ最適化の深層:初回と最終バッチの特殊性を踏まえた効率的なAI画像処理

GPUメモリ最適化の深層:初回と最終バッチの特殊性を踏まえた効率的なAI画像処理
Photo by Timur Garifov / Unsplash

はじめに

こんにちは!Qualitegプロダクト開発部です。

当社では、LLMテクノロジーをベースとしたAIキャラクター、AIヒューマンの研究開発を行っています。そんな中、表情、仕草のように「人間らしさ」をもったバーチャルヒューマンを再現するときには画像生成、画像編集といったAIを活用した画像処理が必要となります。

人と対話するAIヒューマンやバーチャルヒューマンはタイムリーに表情や仕草を生成する必要があるため、複数の画像をフレーム連結してつくるモーション(シンプルにいうと動画)を短時間に生成する必要があります。

このようなとき、AIトレーニングやシンプルな推論とは異なり、いかにGPUの能力を引き出してやるか「GPUの使いこなし術」がミソとなります。

GPUの使いこなし術というと、以前のブログにも連続バッチやダイナミックバッチについてLLM推論のコンテクストで語りましたが、本日は画像処理におけるGPUメモリ最適化、とくに、推論時バッチにおける「初回と最終回」のお作法という少しマニアックな話題について語ってみようとおもいます。

画像処理とGPU

GPUを用いた画像処理や機械学習タスクにおいて、メモリの効率的な使用は性能を左右する重要な要素です。

特に、大規模なデータセットを扱う際には、GPUメモリの動的な挙動を理解し、適切に対処することが求められます。

最初にのべたとおり本記事では、バッチ処理における初回と最終バッチの特殊性に焦点を当て、効率的なGPUメモリ使用のための詳細な戦略を紹介します。

事例

理解を深めるために、具体的な事例で考えます。

今回は、動画を1フレームずつ処理する事例で考えてみましょう。

この動画が全部で120フレームあったとしましょう。つまり、120枚の画像で構成されています。

1枚ずつ処理をすると時間がかかるので、16枚を同時にGPUで処理させます。

つまり、バッチサイズ16でGPUをつかって推論する例を考えてみます。

1. 初回バッチの特殊性:予想外のメモリ消費

現象

初回のバッチ処理時に、その後の通常の推論時よりも大幅に多くのGPUメモリが消費されることがあります。

たとえば、初回推論だけ 2000MBのGPUメモリを消費した。でも、2回目以降は80MB固定だった、みたいな現象が発生します。

原因

  1. CUDA最適化: 初回実行時、CUDAは様々なアルゴリズムを試し、最適な実行パスを決定します。
  2. メモリプール確保: PyTorchなどのフレームワークは、初回に大きめのメモリプールを確保し、以降の処理で再利用します。
  3. JIT(Just-In-Time)コンパイル: 一部の操作では、初回実行時にGPU上でコードがコンパイルされます。

対策と最適化

こんな時はウォームアップ処理を入れておきましょう。

GPU処理をサーバーとして提供しているなら、サーバーの起動時などに、ウォームアップをし、これから行う処理の予行演習を1回やることでGPUの目を覚まさせることができます。たいてい1回目にCUDA最適化処理やPyTorchのメモリ確保などが行われます。複数サーバーをクラスター構成にするときなどもサーバー立ち上げ時の初期化処理として1回予行演習をはさむと安定します。

def warmup_gpu(model, input_shape):
    dummy_input = torch.randn(input_shape).cuda()
    model(dummy_input)  # ウォームアップ実行
    torch.cuda.empty_cache()  # キャッシュをクリア

# 本番処理前にウォームアップを実行
warmup_gpu(model, (1, 3, 224, 224))

効果

  • 初回バッチの異常なメモリ消費を隠蔽
  • 本番処理のパフォーマンスを安定化

2. 最終バッチの特殊性:新たなメモリ確保の罠

現象

データセット数がバッチサイズで割り切れない場合、最終バッチで予想外に大きなメモリ消費が発生することがあります。

今回の例のように 120フレームの動画をバッチサイズ16で処理すると、

120 ÷ 16 = 7 あまり 8 ということで、1番目から7番目までの処理では、16枚の画像をバッチで処理できますが、最終の8番目のバッチ(バッチ8)は、画像がバッチサイズに足りない8枚しか入力できなくなってしまいます。つまり、最終バッチのループで 8枚分は入力できないことになりますね。

一件、問題なさそうにみえますが、実はこれが問題を引き起こします。

最後の1回だけバッチサイズが異なってしまうと、(CUDAさんが最適化をやりなおそうとして)CUDAカーネルの再コンパイルが発生します。これにより、再度、新たなメモリを大き目に確保する現象が発生することがあります。

そこで、最終バッチがバッチサイズを下回った場合でも、同じバッチサイズにあわせこんでGPUに投入してあげるとCUDAカーネルの再コンパイルがかからないで済みます。

原因

  1. 不均一なバッチサイズ: 最終バッチが他のバッチと異なるサイズになると、新たなメモリ領域の確保が必要になります。
  2. CUDAカーネルの再コンパイル: 異なるサイズの入力に対して、CUDAカーネルの再コンパイルが発生する場合があります。
  3. メモリフラグメンテーション: 連続した処理で、小さな未使用メモリ領域が散在し、新たな大きなメモリ確保が必要になることがあります。

対策と最適化

例えば、以下のように、最終バッチがバッチサイズより小さいとき、足りない分を埋めてやることで、GPUに与えるバッチサイズを維持することができます。

たとえば、↑のように最後の要素で残りを埋めてやることができます。

このように、何らかで埋めてデータの長さを整えることを「パディング」と呼びます。上の例では、とりあえず最後の要素でうめてみましたが、0テンソルでうめるなど、何で埋めてやるかはモデルの特性に応じて検討する必要があります。

これはシンプルな対策例ですが、CUDAやPyTorchの組み合わせ・バージョンによっては、これだけでも、巨大メモリの新たな確保という現象を抑えることが可能です。

これが「最終バッチのパディング」という手法となります。

def process_batch(batch, model, batch_size):
    if len(batch) < batch_size:
        # 最後の要素でパディング
        padding = [batch[-1]] * (batch_size - len(batch))
        batch += padding
    
    results = model(batch)
    
    # パディングされた部分を除去
    return results[:len(batch)]

def process_dataset(dataset, model, batch_size):
    results = []
    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i+batch_size]
        batch_results = process_batch(batch, model, batch_size)
        results.extend(batch_results)
    return results

効果

  • バッチサイズの一貫性維持によるメモリ使用の安定化
  • CUDAカーネルの再コンパイル回避
  • メモリフラグメンテーションの軽減

3. 詳細なメモリ使用量のモニタリングと分析

ご紹介のように、いったんモデルが完成したら、各ノードごとの推論の最適化を行うわけですが、その際は、詳細なメモリ使用状況を把握するために、PyTorchの高度なメモリトラッキング機能を活用しましょう。

import torch

def detailed_memory_stats():
    print("\n===== GPU Memory Stats =====")
    print(f"Allocated: {torch.cuda.memory_allocated() / 1e6:.2f} MB")
    print(f"Cached: {torch.cuda.memory_reserved() / 1e6:.2f} MB")
    print(f"Peak Allocated: {torch.cuda.max_memory_allocated() / 1e6:.2f} MB")
    print(f"Peak Cached: {torch.cuda.max_memory_reserved() / 1e6:.2f} MB")

def process_with_memory_tracking(batch, model):
    torch.cuda.reset_peak_memory_stats()
    detailed_memory_stats()
    
    results = model(batch)
    
    detailed_memory_stats()
    return results

# 使用例
for i, batch in enumerate(dataloader):
    print(f"\nProcessing batch {i}")
    results = process_with_memory_tracking(batch, model)

このコードを使用することで、各バッチ処理の前後でのメモリ使用状況の詳細な変化を追跡できます。

これにより、初回バッチや最終バッチでの特殊な挙動を明確に把握し、必要に応じて最適化戦略を調整することが可能になります。

まとめ

GPUを用いた画像処理の最適化、特にメモリ管理においては、初回バッチと最終バッチの特殊性を理解し適切に対処することでGPUメモリの効率的な使用ができることを解説いたしました。

本記事で紹介した技術を活用することで、以下の利点が得られます

  1. 安定したGPUメモリ使用
  2. 予期せぬメモリエラーの回避
  3. 処理速度の向上と安定化
  4. リソース使用の透明性向上

これらの最適化テクニックは、使用するハードウェア、ソフトウェアフレームワーク、そして具体的なタスクによって効果が異なる場合があります。そのため、実際の使用環境での継続的なモニタリングと調整が不可欠ですね。

今回は、1ノード内の1GPUでのバッチ推論について特に説明をしましたが、今後マルチGPUやマルチノードのGPUメモリ効率化についてもまたご紹介させていただければとおもいます。

それでは、本日もお読みいただきありがとうございました!

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部