Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。

AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。

一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。

本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。

Node.jsのバッファサイズ制限の変遷

Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました

Node.jsバージョン サポート終了日 バッファサイズ上限 備考
Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用)
Node.js 4.x (Argon) 2018年4月30日 ~2GB V8 4.4での書き換えにより制限が拡大
Node.js 6.x (Boron) 2019年4月30日 32ビット符号付き整数の最大値
Node.js 8.x (Carbon) 2019年12月31日 OpenSSL 1.0.2のEOLに合わせて早期終了
Node.js 10.x (Dubnium) 2021年4月30日 32ビット符号付き整数の最大値
Node.js 12.x (Erbium) 2022年4月30日 32ビット符号付き整数の最大値
Node.js 14.x (Fermium) 2023年4月30日 途中から4GBに拡大
Node.js 16.x 2023年9月11日 ~4GB OpenSSL 1.1.1のサポート終了に合わせてEOLが早まった
Node.js 17.x 2022年6月1日 奇数バージョンは短期サポート
Node.js 18.x 2025年4月30日 現在メンテナンスLTSフェーズ
Node.js 19.x 2023年6月1日 奇数バージョンは短期サポート
Node.js 20.x 2026年4月30日 現在アクティブLTSフェーズ
Node.js 21.7.2 2024年6月1日
Node.js 21.7.3 2024年6月1日 ~8TB v21.7.3でバッファサイズ上限が大幅拡大
Node.js 22.x (Jod) 2027年4月30日 2024年10月29日にLTSに移行
Node.js 23.x 2025年6月1日 奇数バージョンは短期サポート

Node.js v20LTSでは理論上は4GBまでのバッファを扱えるようになっていますが、I/O操作(ファイルの読み書き)における制限が依然として存在します。これはNode.js自体ではなく、その下層で動作するlibuv(非同期I/Oライブラリ)の制限によるものです。

実際に遭遇した問題:5GBのAIモデルファイル

あるプロジェクトで、5GBのAIモデルファイルをモデル管理サーバーとして使っているNode.js v20 LTSを経由して保存しようとした際、以下のコードを使用しました:

save_file(target_dir, file_name, file_buffer) {
  try {
    // 保存先ディレクトリが存在しない場合は作成
    if (!fs.existsSync(target_dir)) {
      fs.mkdirSync(target_dir, { recursive: true });
    }

    const file_path = path.join(target_dir, file_name);
    fs.writeFileSync(file_path, file_buffer);
    return true;
  } catch (error) {
    console.error(`ファイル保存エラー: ${error.message}\n${error.stack}`);
    return false;
  }
}

すると、以下のようなエラーが発生しました

ファイル保存エラー: The value of "length" is out of range. It must be >= 0 && <= 4294967295. Received 5368709120

このエラーは、Node.js v20LTSのバッファ制限が4GBであるのに対し、我々が扱おうとしていたファイルは5GB(5,368,709,120バイト)だったことを示しています。
こうやって無邪気なコードをかきましたが、巨大ファイルをこのような方法で保存するのはいただけないです。

エラーのとおり、5GBのファイルを一度に処理することはできないことが分かります。

(5GBならかわいいもんですが、素人が数百GBクラスのモデルデータをあつかうと、通常のコードは何でもなかったコードが一斉に不具合に見舞われたりします。)

解決策:ストリーム処理と非同期I/O

さて、この問題を解決するために、ストリーム処理と非同期I/Oを採用したアプローチに切り替えました

async save_file(target_dir, file_name, input_data) {
  try {
    // 保存先ディレクトリが存在しない場合は作成(非同期版)
    await fs.promises.mkdir(target_dir, { recursive: true });

    const file_path = path.join(target_dir, file_name);
    
    // ストリームを使用してファイルを書き込む
    const writeStream = fs.createWriteStream(file_path);
    
    // Bufferの場合
    if (Buffer.isBuffer(input_data)) {
      // チャンクに分割して書き込む
      const chunkSize = 1024 * 1024; // 1MBずつ
      for (let i = 0; i < input_data.length; i += chunkSize) {
        const chunk = input_data.slice(i, Math.min(i + chunkSize, input_data.length));
        writeStream.write(chunk);
      }
      writeStream.end();
    } 
    // ストリームの場合
    else if (typeof input_data.pipe === 'function') {
      input_data.pipe(writeStream);
    }
    // その他の場合(文字列など)
    else {
      writeStream.write(input_data);
      writeStream.end();
    }

    // 完了または失敗を待機する
    await new Promise((resolve, reject) => {
      writeStream.on('finish', resolve);
      writeStream.on('error', reject);
    });
    
    return true;
  } catch (error) {
    console.error(`ファイル保存エラー: ${error.message}\n${error.stack}`);
    throw error; // asyncメソッドなのでthrowを使う
  }
}

この改善版コードを使って5GBのモデルファイルを問題なく保存できるようになりました。

主な改善点は以下の通りです

  1. ストリーム処理
    データを小さなチャンク(1MB)に分割して処理することで、バッファサイズの制限を回避しました。
  2. 非同期処理
    async/awaitを使用することで、ファイル処理中もサーバーが他のリクエストに応答できるようになりました。
  3. プログレス表示の実装
    大きなファイルの転送過程を監視するために、チャンク単位のプログレス表示も組み込みました(コード例では省略)。

ということで、巨大ファイルを扱い、安定性を向上するためには、キャッシュ・ストリーミング・非同期での処理が非常に重要となります。

最新のNode.js(2025年4月時点でv.23)でも注意が必要

さて、Node.js v22以降では理論上8TBまでのバッファを扱えるようになりますが、実際のI/O操作ではまだ制限があるため、大きなファイルを扱う際にはどのバージョンでもストリーム処理を採用することがおすすめです。

(おまけ)さらに、マルチコアを活かすことで、パフォーマンス向上・最適化

Node.jsは単一スレッドで動作するため、CPUバウンドな処理を行う場合、マルチコアのパフォーマンスを活かしきれません。これを解決するのがclusterモジュールです。

今回のように単純なファイル保存の場合、基本的に単一ファイルへの書き込みはI/Oバウンドな処理で、OSのファイルシステムによって直列化されますので、複数のプロセスからの保存には実はそんなに意味がありません。まして、同じファイルに同時に書き込むと、ファイルシステムのロックやシークポインタの競合が発生し、むしろパフォーマンスが低下する可能性すらあります。

ただ、ファイルに対して一定の処理を行ったりする場合には、マルチコアにすることで、パフォーマンスを向上できる可能性もありますので、ご紹介します。

cluster モジュールの基本的な使い方

import cluster from 'node:cluster';
import http from 'node:http';
import { cpus } from 'node:os';
import process from 'node:process';

const numCPUs = cpus().length;

if (cluster.isPrimary) {
  console.log(`メインプロセス ${process.pid} 実行中`);
  
  // CPUコア数分のワーカーを起動
  for (let i = 0; i < numCPUs; i++) {
    cluster.fork();
  }
  
  cluster.on('exit', (worker, code, signal) => {
    console.log(`ワーカー ${worker.process.pid} が終了しました`);
    // 必要に応じてワーカーを再起動
    cluster.fork();
  });
} else {
  // ワーカーは同じポートでHTTPサーバーを起動
  http.createServer((req, res) => {
    res.writeHead(200);
    res.end('Hello World\n');
  }).listen(8000);
  
  console.log(`ワーカー ${process.pid} 起動完了`);
}

大容量ファイル処理での最適化の組み合わせ

大容量ファイル+何等かな処理(CPUバウンドな)を扱う場合は、ストリーム処理とclusterモジュールを組み合わせることで、さらに効率的な処理が可能になります

  1. CPUコア数の最適利用
    clusterモジュールでCPUコア数分のプロセスを起動
  2. ストリーム処理
    各ワーカープロセス内でチャンク単位のストリーム処理を実装
  3. 負荷分散
    大きなファイルをワーカー間で分割処理(例: 範囲ごとに担当を分ける)

まとめ

AIモデルのような大容量ファイルを扱うNode.jsアプリケーションのストリーム処理についてご紹介しました。巨大ファイルはストリーム処理と非同期I/O操作を組み合わせることで効率的に扱うことができます

それではまた次回おあいしましょう!

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング
自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング