Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。

AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。

一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。

本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。

Node.jsのバッファサイズ制限の変遷

Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました

Node.jsバージョン サポート終了日 バッファサイズ上限 備考
Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用)
Node.js 4.x (Argon) 2018年4月30日 ~2GB V8 4.4での書き換えにより制限が拡大
Node.js 6.x (Boron) 2019年4月30日 32ビット符号付き整数の最大値
Node.js 8.x (Carbon) 2019年12月31日 OpenSSL 1.0.2のEOLに合わせて早期終了
Node.js 10.x (Dubnium) 2021年4月30日 32ビット符号付き整数の最大値
Node.js 12.x (Erbium) 2022年4月30日 32ビット符号付き整数の最大値
Node.js 14.x (Fermium) 2023年4月30日 途中から4GBに拡大
Node.js 16.x 2023年9月11日 ~4GB OpenSSL 1.1.1のサポート終了に合わせてEOLが早まった
Node.js 17.x 2022年6月1日 奇数バージョンは短期サポート
Node.js 18.x 2025年4月30日 現在メンテナンスLTSフェーズ
Node.js 19.x 2023年6月1日 奇数バージョンは短期サポート
Node.js 20.x 2026年4月30日 現在アクティブLTSフェーズ
Node.js 21.7.2 2024年6月1日
Node.js 21.7.3 2024年6月1日 ~8TB v21.7.3でバッファサイズ上限が大幅拡大
Node.js 22.x (Jod) 2027年4月30日 2024年10月29日にLTSに移行
Node.js 23.x 2025年6月1日 奇数バージョンは短期サポート

Node.js v20LTSでは理論上は4GBまでのバッファを扱えるようになっていますが、I/O操作(ファイルの読み書き)における制限が依然として存在します。これはNode.js自体ではなく、その下層で動作するlibuv(非同期I/Oライブラリ)の制限によるものです。

実際に遭遇した問題:5GBのAIモデルファイル

あるプロジェクトで、5GBのAIモデルファイルをモデル管理サーバーとして使っているNode.js v20 LTSを経由して保存しようとした際、以下のコードを使用しました:

save_file(target_dir, file_name, file_buffer) {
  try {
    // 保存先ディレクトリが存在しない場合は作成
    if (!fs.existsSync(target_dir)) {
      fs.mkdirSync(target_dir, { recursive: true });
    }

    const file_path = path.join(target_dir, file_name);
    fs.writeFileSync(file_path, file_buffer);
    return true;
  } catch (error) {
    console.error(`ファイル保存エラー: ${error.message}\n${error.stack}`);
    return false;
  }
}

すると、以下のようなエラーが発生しました

ファイル保存エラー: The value of "length" is out of range. It must be >= 0 && <= 4294967295. Received 5368709120

このエラーは、Node.js v20LTSのバッファ制限が4GBであるのに対し、我々が扱おうとしていたファイルは5GB(5,368,709,120バイト)だったことを示しています。
こうやって無邪気なコードをかきましたが、巨大ファイルをこのような方法で保存するのはいただけないです。

エラーのとおり、5GBのファイルを一度に処理することはできないことが分かります。

(5GBならかわいいもんですが、素人が数百GBクラスのモデルデータをあつかうと、通常のコードは何でもなかったコードが一斉に不具合に見舞われたりします。)

解決策:ストリーム処理と非同期I/O

さて、この問題を解決するために、ストリーム処理と非同期I/Oを採用したアプローチに切り替えました

async save_file(target_dir, file_name, input_data) {
  try {
    // 保存先ディレクトリが存在しない場合は作成(非同期版)
    await fs.promises.mkdir(target_dir, { recursive: true });

    const file_path = path.join(target_dir, file_name);
    
    // ストリームを使用してファイルを書き込む
    const writeStream = fs.createWriteStream(file_path);
    
    // Bufferの場合
    if (Buffer.isBuffer(input_data)) {
      // チャンクに分割して書き込む
      const chunkSize = 1024 * 1024; // 1MBずつ
      for (let i = 0; i < input_data.length; i += chunkSize) {
        const chunk = input_data.slice(i, Math.min(i + chunkSize, input_data.length));
        writeStream.write(chunk);
      }
      writeStream.end();
    } 
    // ストリームの場合
    else if (typeof input_data.pipe === 'function') {
      input_data.pipe(writeStream);
    }
    // その他の場合(文字列など)
    else {
      writeStream.write(input_data);
      writeStream.end();
    }

    // 完了または失敗を待機する
    await new Promise((resolve, reject) => {
      writeStream.on('finish', resolve);
      writeStream.on('error', reject);
    });
    
    return true;
  } catch (error) {
    console.error(`ファイル保存エラー: ${error.message}\n${error.stack}`);
    throw error; // asyncメソッドなのでthrowを使う
  }
}

この改善版コードを使って5GBのモデルファイルを問題なく保存できるようになりました。

主な改善点は以下の通りです

  1. ストリーム処理
    データを小さなチャンク(1MB)に分割して処理することで、バッファサイズの制限を回避しました。
  2. 非同期処理
    async/awaitを使用することで、ファイル処理中もサーバーが他のリクエストに応答できるようになりました。
  3. プログレス表示の実装
    大きなファイルの転送過程を監視するために、チャンク単位のプログレス表示も組み込みました(コード例では省略)。

ということで、巨大ファイルを扱い、安定性を向上するためには、キャッシュ・ストリーミング・非同期での処理が非常に重要となります。

最新のNode.js(2025年4月時点でv.23)でも注意が必要

さて、Node.js v22以降では理論上8TBまでのバッファを扱えるようになりますが、実際のI/O操作ではまだ制限があるため、大きなファイルを扱う際にはどのバージョンでもストリーム処理を採用することがおすすめです。

(おまけ)さらに、マルチコアを活かすことで、パフォーマンス向上・最適化

Node.jsは単一スレッドで動作するため、CPUバウンドな処理を行う場合、マルチコアのパフォーマンスを活かしきれません。これを解決するのがclusterモジュールです。

今回のように単純なファイル保存の場合、基本的に単一ファイルへの書き込みはI/Oバウンドな処理で、OSのファイルシステムによって直列化されますので、複数のプロセスからの保存には実はそんなに意味がありません。まして、同じファイルに同時に書き込むと、ファイルシステムのロックやシークポインタの競合が発生し、むしろパフォーマンスが低下する可能性すらあります。

ただ、ファイルに対して一定の処理を行ったりする場合には、マルチコアにすることで、パフォーマンスを向上できる可能性もありますので、ご紹介します。

cluster モジュールの基本的な使い方

import cluster from 'node:cluster';
import http from 'node:http';
import { cpus } from 'node:os';
import process from 'node:process';

const numCPUs = cpus().length;

if (cluster.isPrimary) {
  console.log(`メインプロセス ${process.pid} 実行中`);
  
  // CPUコア数分のワーカーを起動
  for (let i = 0; i < numCPUs; i++) {
    cluster.fork();
  }
  
  cluster.on('exit', (worker, code, signal) => {
    console.log(`ワーカー ${worker.process.pid} が終了しました`);
    // 必要に応じてワーカーを再起動
    cluster.fork();
  });
} else {
  // ワーカーは同じポートでHTTPサーバーを起動
  http.createServer((req, res) => {
    res.writeHead(200);
    res.end('Hello World\n');
  }).listen(8000);
  
  console.log(`ワーカー ${process.pid} 起動完了`);
}

大容量ファイル処理での最適化の組み合わせ

大容量ファイル+何等かな処理(CPUバウンドな)を扱う場合は、ストリーム処理とclusterモジュールを組み合わせることで、さらに効率的な処理が可能になります

  1. CPUコア数の最適利用
    clusterモジュールでCPUコア数分のプロセスを起動
  2. ストリーム処理
    各ワーカープロセス内でチャンク単位のストリーム処理を実装
  3. 負荷分散
    大きなファイルをワーカー間で分割処理(例: 範囲ごとに担当を分ける)

まとめ

AIモデルのような大容量ファイルを扱うNode.jsアプリケーションのストリーム処理についてご紹介しました。巨大ファイルはストリーム処理と非同期I/O操作を組み合わせることで効率的に扱うことができます

それではまた次回おあいしましょう!

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部