Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。

AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。

一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。

本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。

Node.jsのバッファサイズ制限の変遷

Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました

Node.jsバージョン サポート終了日 バッファサイズ上限 備考
Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用)
Node.js 4.x (Argon) 2018年4月30日 ~2GB V8 4.4での書き換えにより制限が拡大
Node.js 6.x (Boron) 2019年4月30日 32ビット符号付き整数の最大値
Node.js 8.x (Carbon) 2019年12月31日 OpenSSL 1.0.2のEOLに合わせて早期終了
Node.js 10.x (Dubnium) 2021年4月30日 32ビット符号付き整数の最大値
Node.js 12.x (Erbium) 2022年4月30日 32ビット符号付き整数の最大値
Node.js 14.x (Fermium) 2023年4月30日 途中から4GBに拡大
Node.js 16.x 2023年9月11日 ~4GB OpenSSL 1.1.1のサポート終了に合わせてEOLが早まった
Node.js 17.x 2022年6月1日 奇数バージョンは短期サポート
Node.js 18.x 2025年4月30日 現在メンテナンスLTSフェーズ
Node.js 19.x 2023年6月1日 奇数バージョンは短期サポート
Node.js 20.x 2026年4月30日 現在アクティブLTSフェーズ
Node.js 21.7.2 2024年6月1日
Node.js 21.7.3 2024年6月1日 ~8TB v21.7.3でバッファサイズ上限が大幅拡大
Node.js 22.x (Jod) 2027年4月30日 2024年10月29日にLTSに移行
Node.js 23.x 2025年6月1日 奇数バージョンは短期サポート

Node.js v20LTSでは理論上は4GBまでのバッファを扱えるようになっていますが、I/O操作(ファイルの読み書き)における制限が依然として存在します。これはNode.js自体ではなく、その下層で動作するlibuv(非同期I/Oライブラリ)の制限によるものです。

実際に遭遇した問題:5GBのAIモデルファイル

あるプロジェクトで、5GBのAIモデルファイルをモデル管理サーバーとして使っているNode.js v20 LTSを経由して保存しようとした際、以下のコードを使用しました:

save_file(target_dir, file_name, file_buffer) {
  try {
    // 保存先ディレクトリが存在しない場合は作成
    if (!fs.existsSync(target_dir)) {
      fs.mkdirSync(target_dir, { recursive: true });
    }

    const file_path = path.join(target_dir, file_name);
    fs.writeFileSync(file_path, file_buffer);
    return true;
  } catch (error) {
    console.error(`ファイル保存エラー: ${error.message}\n${error.stack}`);
    return false;
  }
}

すると、以下のようなエラーが発生しました

ファイル保存エラー: The value of "length" is out of range. It must be >= 0 && <= 4294967295. Received 5368709120

このエラーは、Node.js v20LTSのバッファ制限が4GBであるのに対し、我々が扱おうとしていたファイルは5GB(5,368,709,120バイト)だったことを示しています。
こうやって無邪気なコードをかきましたが、巨大ファイルをこのような方法で保存するのはいただけないです。

エラーのとおり、5GBのファイルを一度に処理することはできないことが分かります。

(5GBならかわいいもんですが、素人が数百GBクラスのモデルデータをあつかうと、通常のコードは何でもなかったコードが一斉に不具合に見舞われたりします。)

解決策:ストリーム処理と非同期I/O

さて、この問題を解決するために、ストリーム処理と非同期I/Oを採用したアプローチに切り替えました

async save_file(target_dir, file_name, input_data) {
  try {
    // 保存先ディレクトリが存在しない場合は作成(非同期版)
    await fs.promises.mkdir(target_dir, { recursive: true });

    const file_path = path.join(target_dir, file_name);
    
    // ストリームを使用してファイルを書き込む
    const writeStream = fs.createWriteStream(file_path);
    
    // Bufferの場合
    if (Buffer.isBuffer(input_data)) {
      // チャンクに分割して書き込む
      const chunkSize = 1024 * 1024; // 1MBずつ
      for (let i = 0; i < input_data.length; i += chunkSize) {
        const chunk = input_data.slice(i, Math.min(i + chunkSize, input_data.length));
        writeStream.write(chunk);
      }
      writeStream.end();
    } 
    // ストリームの場合
    else if (typeof input_data.pipe === 'function') {
      input_data.pipe(writeStream);
    }
    // その他の場合(文字列など)
    else {
      writeStream.write(input_data);
      writeStream.end();
    }

    // 完了または失敗を待機する
    await new Promise((resolve, reject) => {
      writeStream.on('finish', resolve);
      writeStream.on('error', reject);
    });
    
    return true;
  } catch (error) {
    console.error(`ファイル保存エラー: ${error.message}\n${error.stack}`);
    throw error; // asyncメソッドなのでthrowを使う
  }
}

この改善版コードを使って5GBのモデルファイルを問題なく保存できるようになりました。

主な改善点は以下の通りです

  1. ストリーム処理
    データを小さなチャンク(1MB)に分割して処理することで、バッファサイズの制限を回避しました。
  2. 非同期処理
    async/awaitを使用することで、ファイル処理中もサーバーが他のリクエストに応答できるようになりました。
  3. プログレス表示の実装
    大きなファイルの転送過程を監視するために、チャンク単位のプログレス表示も組み込みました(コード例では省略)。

ということで、巨大ファイルを扱い、安定性を向上するためには、キャッシュ・ストリーミング・非同期での処理が非常に重要となります。

最新のNode.js(2025年4月時点でv.23)でも注意が必要

さて、Node.js v22以降では理論上8TBまでのバッファを扱えるようになりますが、実際のI/O操作ではまだ制限があるため、大きなファイルを扱う際にはどのバージョンでもストリーム処理を採用することがおすすめです。

(おまけ)さらに、マルチコアを活かすことで、パフォーマンス向上・最適化

Node.jsは単一スレッドで動作するため、CPUバウンドな処理を行う場合、マルチコアのパフォーマンスを活かしきれません。これを解決するのがclusterモジュールです。

今回のように単純なファイル保存の場合、基本的に単一ファイルへの書き込みはI/Oバウンドな処理で、OSのファイルシステムによって直列化されますので、複数のプロセスからの保存には実はそんなに意味がありません。まして、同じファイルに同時に書き込むと、ファイルシステムのロックやシークポインタの競合が発生し、むしろパフォーマンスが低下する可能性すらあります。

ただ、ファイルに対して一定の処理を行ったりする場合には、マルチコアにすることで、パフォーマンスを向上できる可能性もありますので、ご紹介します。

cluster モジュールの基本的な使い方

import cluster from 'node:cluster';
import http from 'node:http';
import { cpus } from 'node:os';
import process from 'node:process';

const numCPUs = cpus().length;

if (cluster.isPrimary) {
  console.log(`メインプロセス ${process.pid} 実行中`);
  
  // CPUコア数分のワーカーを起動
  for (let i = 0; i < numCPUs; i++) {
    cluster.fork();
  }
  
  cluster.on('exit', (worker, code, signal) => {
    console.log(`ワーカー ${worker.process.pid} が終了しました`);
    // 必要に応じてワーカーを再起動
    cluster.fork();
  });
} else {
  // ワーカーは同じポートでHTTPサーバーを起動
  http.createServer((req, res) => {
    res.writeHead(200);
    res.end('Hello World\n');
  }).listen(8000);
  
  console.log(`ワーカー ${process.pid} 起動完了`);
}

大容量ファイル処理での最適化の組み合わせ

大容量ファイル+何等かな処理(CPUバウンドな)を扱う場合は、ストリーム処理とclusterモジュールを組み合わせることで、さらに効率的な処理が可能になります

  1. CPUコア数の最適利用
    clusterモジュールでCPUコア数分のプロセスを起動
  2. ストリーム処理
    各ワーカープロセス内でチャンク単位のストリーム処理を実装
  3. 負荷分散
    大きなファイルをワーカー間で分割処理(例: 範囲ごとに担当を分ける)

まとめ

AIモデルのような大容量ファイルを扱うNode.jsアプリケーションのストリーム処理についてご紹介しました。巨大ファイルはストリーム処理と非同期I/O操作を組み合わせることで効率的に扱うことができます

それではまた次回おあいしましょう!

Read more

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング