[AI新規事業創出] Qualitegが考える、アイディア創造で発散が必要な理由

新規事業のアイディア創出時には、部署内だけでなく、多様な職種や背景を持つ社内の関係者全員を巻き込むことが推奨されます。これにより、多角的な視点が確保され、実現可能性の高いアイディアが生まれやすくなります。また、プロジェクト初期からの協働はチーム間のコミュニケーションを強化し、各自が専門性を活かしたアイディア提供により、より具体的で効果的な解決策へと繋がるためです。

[AI新規事業創出] Qualitegが考える、アイディア創造で発散が必要な理由

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


部署内で「新規事業を考えよう!」となったとき、皆さんはどのように、進めてらっしゃいますか?

各自が持ち寄ったアイディアを話すが、無意識のうちに?上司に忖度してしまって、よいと思ってなくても「いいね」と言ってしまう。。。
アイディアマンの人がいて、自分はそういうのが苦手だから、任せている。。。

なんていうお声も、新規事業コンサルティングをさせていただいておりますとよく聞きますが、これは 本当にもったいない ことです。

アイディア創出の過程で「発散的思考」を取り入れることの重要性は、2000年代後半以降からでしょうか、デザインシンキングが広まりだした頃から徐々に馴染んできました。海外ではイノベーションを目指す多くの企業で認知されていますが、日本企業ではどうでしょうか。

皆さん、取り入れていらっしゃいますか?

私たちAI企業のQualitegでは、 創造的な発想が次世代のテクノロジーや豊かな生活を形作る核心部分 だと考えています。

本日は、なぜ発散思考がアイディア創造においてなぜ不可欠なのかを、その理由とともに解説させていただきますね。

多様な視点からのアイディア創出

発散的思考の最大の利点は、従来の枠を超えた多様な視点からアイディアを引き出せることだと私たちは考えています。

特にAIの技術進化は複雑で、異なる角度からのアプローチが新たな解決策を生み出すことも多いという実感を持っている、ということもありますが、Diversity環境を作る、具体的には 性別、職業、年齢、国籍などが異なる人々でだいたい8人くらい集まってアイディア創出をすることをお勧め致します。

アイディア創造のフェーズでは、以下にアイディアを発散させ、多方面のアイディアを大量に出せるか、が勝負になります。そのため、 他のメンバーのアイディアに良い意味で「ワルノリ」してでも、他の人のアイディアに乗っかって、遠慮せずにアイディアをバンバン出しましょう♪

このステップを通過することで、チームメンバー同士がノーリスクで自由に思考を巡らせることができ、予期せぬ組み合わせやアイディアが浮かび上がるベースとなります。

株式会社Qualitegの Innovation-Crossは、多様な業界での革新創出を支援してきた実績を持つ共創プログラムです。大手製造業の新製品開発から、不動産ディベロッパーのデジタルトランスフォーメーション、サービス業の顧客体験革新まで、数多くの成功事例を創出。その経験と知見をもとに、御社の革新創出を強力に支援します。

企業の現状分析から戦略策定、実行支援まで一貫したアプローチで、「自社だけでは実現困難」なイノベーションを外部との協業で実現。アイデアワークショップ、ハッカソン企画、AI技術活用など、検証済みの手法で確実な成果を生み出します。実績が証明する、確かな革新力を御社のイノベーション創出に。

多国籍チームを組成するのが難しいケースでは?

会社によっては、年齢、多国籍など異なる人を集めるのが難しいケースも多いと思います。そのような場合にアドバイスさせていただいているのが、全く異なる部門や本部の方とチームを組むことです。

正直、同じ部門のいつも触れ合う人と話した方が、同じテイストのアイディアが出て「心地良い雰囲気」になるというのは理解できます。

ただ、ここでは「よい雰囲気を味わう」のが目的ではなく、 あらゆる角度から見た多くのアイディアを出すことが目的 ですので、例えば、

  • B2Bセールスの方
  • ソフトウェアエンジニアの方
  • コールセンターの方
  • プロダクトデザイナーの方
  • B2Cマーケの方
  • 法務部の方
  • 部署の秘書庶務さん

という形で、異なる製品・サービスを違う部署で担当している方で集まっていただくのも、Diversityが生まれるケースが多く、最初に少し疑心暗鬼なクライアント企業ほど、ワーク後の皆様の新鮮味や満足度も非常に高いので、Qualitegでは推奨させていただいております。

assorted notepads

サービス開発のためのコミュニケーションや協働意欲の強化も

発散的思考は、チームメンバーがそれぞれお互いのアイディアを共有し、相手のアイディアに乗ったり、引き算してみたり、相互に影響を与え合います。

このようなオープンな環境は、協働を促進し、多様なバックグラウンドを持つ人々が共に働く中で新しいアイディアが生まれやすくなるというメリットもあります。

また、よくある企業のケースでは、企画担当だけで企画して、社内エンジニアに開発してもらうケースがありますが、私たちはアイディア出しの段階から関係者全員巻き込んでアイディア創出をすることをお勧めします。

理由は、多様な視点を入れてアイディアを出したいというのももちろんあるのですが、 各自が自分の業務で培った専門性をもってアイディアを出してくれるので、実現可能性についての評価を同時にできる ケースもあります。

また、プロジェクトの初期段階から関係者を巻き込むことで、 透明性を担保 し、目標に対する理解と共感を深める ことができるので、 部門間の障壁を低減することも可能です。

何より、プロジェクト推進、サービス企画、その後世の中にリリースした後も初期のアイディア創出に参加してくれた人々は、 仲間となり、伝道師となり、応援し続けてくれる ことでしょう。

早期段階での社内の仲間づくり という観点からもこれらのアプローチはお勧めできます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング