[AI新規事業創出] Qualitegが考える、アイディア創造で発散が必要な理由

新規事業のアイディア創出時には、部署内だけでなく、多様な職種や背景を持つ社内の関係者全員を巻き込むことが推奨されます。これにより、多角的な視点が確保され、実現可能性の高いアイディアが生まれやすくなります。また、プロジェクト初期からの協働はチーム間のコミュニケーションを強化し、各自が専門性を活かしたアイディア提供により、より具体的で効果的な解決策へと繋がるためです。

[AI新規事業創出] Qualitegが考える、アイディア創造で発散が必要な理由

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


部署内で「新規事業を考えよう!」となったとき、皆さんはどのように、進めてらっしゃいますか?

各自が持ち寄ったアイディアを話すが、無意識のうちに?上司に忖度してしまって、よいと思ってなくても「いいね」と言ってしまう。。。
アイディアマンの人がいて、自分はそういうのが苦手だから、任せている。。。

なんていうお声も、新規事業コンサルティングをさせていただいておりますとよく聞きますが、これは 本当にもったいない ことです。

アイディア創出の過程で「発散的思考」を取り入れることの重要性は、2000年代後半以降からでしょうか、デザインシンキングが広まりだした頃から徐々に馴染んできました。海外ではイノベーションを目指す多くの企業で認知されていますが、日本企業ではどうでしょうか。

皆さん、取り入れていらっしゃいますか?

私たちAI企業のQualitegでは、 創造的な発想が次世代のテクノロジーや豊かな生活を形作る核心部分 だと考えています。

本日は、なぜ発散思考がアイディア創造においてなぜ不可欠なのかを、その理由とともに解説させていただきますね。

多様な視点からのアイディア創出

発散的思考の最大の利点は、従来の枠を超えた多様な視点からアイディアを引き出せることだと私たちは考えています。

特にAIの技術進化は複雑で、異なる角度からのアプローチが新たな解決策を生み出すことも多いという実感を持っている、ということもありますが、Diversity環境を作る、具体的には 性別、職業、年齢、国籍などが異なる人々でだいたい8人くらい集まってアイディア創出をすることをお勧め致します。

アイディア創造のフェーズでは、以下にアイディアを発散させ、多方面のアイディアを大量に出せるか、が勝負になります。そのため、 他のメンバーのアイディアに良い意味で「ワルノリ」してでも、他の人のアイディアに乗っかって、遠慮せずにアイディアをバンバン出しましょう♪

このステップを通過することで、チームメンバー同士がノーリスクで自由に思考を巡らせることができ、予期せぬ組み合わせやアイディアが浮かび上がるベースとなります。

株式会社Qualitegの Innovation-Crossは、多様な業界での革新創出を支援してきた実績を持つ共創プログラムです。大手製造業の新製品開発から、不動産ディベロッパーのデジタルトランスフォーメーション、サービス業の顧客体験革新まで、数多くの成功事例を創出。その経験と知見をもとに、御社の革新創出を強力に支援します。

企業の現状分析から戦略策定、実行支援まで一貫したアプローチで、「自社だけでは実現困難」なイノベーションを外部との協業で実現。アイデアワークショップ、ハッカソン企画、AI技術活用など、検証済みの手法で確実な成果を生み出します。実績が証明する、確かな革新力を御社のイノベーション創出に。

多国籍チームを組成するのが難しいケースでは?

会社によっては、年齢、多国籍など異なる人を集めるのが難しいケースも多いと思います。そのような場合にアドバイスさせていただいているのが、全く異なる部門や本部の方とチームを組むことです。

正直、同じ部門のいつも触れ合う人と話した方が、同じテイストのアイディアが出て「心地良い雰囲気」になるというのは理解できます。

ただ、ここでは「よい雰囲気を味わう」のが目的ではなく、 あらゆる角度から見た多くのアイディアを出すことが目的 ですので、例えば、

  • B2Bセールスの方
  • ソフトウェアエンジニアの方
  • コールセンターの方
  • プロダクトデザイナーの方
  • B2Cマーケの方
  • 法務部の方
  • 部署の秘書庶務さん

という形で、異なる製品・サービスを違う部署で担当している方で集まっていただくのも、Diversityが生まれるケースが多く、最初に少し疑心暗鬼なクライアント企業ほど、ワーク後の皆様の新鮮味や満足度も非常に高いので、Qualitegでは推奨させていただいております。

assorted notepads

サービス開発のためのコミュニケーションや協働意欲の強化も

発散的思考は、チームメンバーがそれぞれお互いのアイディアを共有し、相手のアイディアに乗ったり、引き算してみたり、相互に影響を与え合います。

このようなオープンな環境は、協働を促進し、多様なバックグラウンドを持つ人々が共に働く中で新しいアイディアが生まれやすくなるというメリットもあります。

また、よくある企業のケースでは、企画担当だけで企画して、社内エンジニアに開発してもらうケースがありますが、私たちはアイディア出しの段階から関係者全員巻き込んでアイディア創出をすることをお勧めします。

理由は、多様な視点を入れてアイディアを出したいというのももちろんあるのですが、 各自が自分の業務で培った専門性をもってアイディアを出してくれるので、実現可能性についての評価を同時にできる ケースもあります。

また、プロジェクトの初期段階から関係者を巻き込むことで、 透明性を担保 し、目標に対する理解と共感を深める ことができるので、 部門間の障壁を低減することも可能です。

何より、プロジェクト推進、サービス企画、その後世の中にリリースした後も初期のアイディア創出に参加してくれた人々は、 仲間となり、伝道師となり、応援し続けてくれる ことでしょう。

早期段階での社内の仲間づくり という観点からもこれらのアプローチはお勧めできます。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング