Mistral AI社の最新LLM「Mistral NeMo 12B」を徹底解説

Mistral AI社の最新LLM「Mistral NeMo 12B」を徹底解説

こんにちは。今回は2024年7月19日にリリースされたMistral AI社の最新LLM「Mistral NeMo 12B」をご紹介します。

本モデルの特徴や性能を解説し、実際にChatStreamを使用してチャットの使用感を確かめていきます。

Mistral NeMo 12Bとは

Mistral NeMo 12BはMistral AI社がNVIDIAと協力して開発した最新モデルです。Apache2ライセンスを採用しており、自由に使用、変更、配布が可能な非常に自由度の高いモデルとなっています。

解説動画

本記事の内容は以下の動画にもまとめてありますので、あわせてごらんくださいませ

主な特長

本モデルには3つの大きな特長があります:

  1. 大きなコンテクストサイズと高い推論性能
  2. 多言語性能
  3. 効率的なトークナイザー

1. 大きなコンテクストサイズと高い推論性能

Mistral NeMo 12Bは120億パラメータの比較的小型のモデルですが、同サイズカテゴリーの中でも高い性能を発揮しています。Google社のGemma2 9BやMeta社のLlama3 8Bと比較すると、特にコンテキストウィンドウが際立っています。Mistral NeMo 12Bのコンテキストサイズは128000で、これは他の2つのモデルの16倍のサイズです。

2. 多言語性能

Mistral NeMo 12Bは多言語対応に優れています。英語はもちろん、日本語、フランス語、ドイツ語、スペイン語、イタリア語、ポルトガル語、中国語、韓国語、アラビア語、ヒンディー語など、幅広い言語で高いパフォーマンスを発揮します。

  • マルチタスク言語理解ベンチマーク「MMLU」のスコア:68%(GPT-3.5 Turboの69.8%と同等)
  • 日本語理解能力を評価したJMMLUのスコア:59%

3. 効率的なトークナイザー

新しい圧縮技術「Tekken」の採用により、自然言語テキストやソースコードの処理効率が大幅に向上しています。特に日本語では1.56倍の効率化を実現しています。

実際のチャット体験

ChatStream.netを使用して、Mistral Nemo 12Bとのチャットを試してみましょう。

以下URLで実際にチャットを試すことができます

https://chatstream.net/?model_id=mistral_nemo_instruct_2407&ws_name=chat_app

上記動画では以下のようなものを試してみました

  1. Mistral AI社について日本語で質問
  2. 同じ質問を英語で回答してもらう
  3. フランス語での回答を試す
  4. 映画「タイタニック」に関する質問
  5. ジェームズ・キャメロン監督の作品について質問
  6. 「ターミネーター2」の登場人物について質問
  7. 同じ質問を英語で行い、回答の正確性を比較

結果として、英語での回答のほうが日本語よりも正確性が高いことが分かりました。

コード生成能力

また、温度変換やリスト処理のPythonコードを生成してもらったところ、正確なコードと丁寧な説明が得られました。

モデルアーキテクチャ詳細

推論環境

今回使用した推論環境は以下のとおりです。

  • GPU:A5000
  • OS:Ubuntu
  • 推論エンジン:当社オリジナルのダイナミックバッチ・連続バッチ推論エンジン(通称"クラシックエンジン")
  • 推論サーバー:ChatStream Server
  • UI:ChatStream WebUI

ChatStream SDKを使用することで、約20分でMistral NeMo 12Bのチャット環境をインターネットに公開することができました。

まとめ

Mistral NeMo 12Bは、コンパクトなサイズながら高い性能を持つ多言語LLMです。特に大きなコンテキストサイズと効率的なトークナイザーが特徴的で、RAGなどの実践的な用途に強みを発揮しそうです。

生成AIのお悩み、LLMを活用した新規事業、LLMサービスの構築については、当社Qualitegまでお気軽にご相談ください。

Read more

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation
Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

何度か、WSL にいろんなバージョンのLinux を入れたり消したりしたときに遭遇した現象です ユーザー設定の読み込み中にエラーが発生しました 無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。"icon" を設定するときは、値が画像への有効なファイルパスとなっていることをご確認ください。 が発生するときの原因と対象法のレポートです 原因 使われなくなったゾンビ・プロファイルがWindows Terminal (のキャッシュ)に残り続ける 対処法 このメッセージを解消するには、いったん、プロファイルをリセットする必要がありました。 ※既存プロファイル設定が消える場合があるので留意すること Step1 Windows Terminal を落とす Windows Terminal をいったんすべて落とす Step2 settings.json を消す エクスプローラーで settings.json のあるフォルダに移動しファイルを削除する %LOCALAPPDATA%\Packages\Micros

By Qualiteg プロダクト開発部