Mistral AI社の最新LLM「Mistral NeMo 12B」を徹底解説

Mistral AI社の最新LLM「Mistral NeMo 12B」を徹底解説

こんにちは。今回は2024年7月19日にリリースされたMistral AI社の最新LLM「Mistral NeMo 12B」をご紹介します。

本モデルの特徴や性能を解説し、実際にChatStreamを使用してチャットの使用感を確かめていきます。

Mistral NeMo 12Bとは

Mistral NeMo 12BはMistral AI社がNVIDIAと協力して開発した最新モデルです。Apache2ライセンスを採用しており、自由に使用、変更、配布が可能な非常に自由度の高いモデルとなっています。

解説動画

本記事の内容は以下の動画にもまとめてありますので、あわせてごらんくださいませ

主な特長

本モデルには3つの大きな特長があります:

  1. 大きなコンテクストサイズと高い推論性能
  2. 多言語性能
  3. 効率的なトークナイザー

1. 大きなコンテクストサイズと高い推論性能

Mistral NeMo 12Bは120億パラメータの比較的小型のモデルですが、同サイズカテゴリーの中でも高い性能を発揮しています。Google社のGemma2 9BやMeta社のLlama3 8Bと比較すると、特にコンテキストウィンドウが際立っています。Mistral NeMo 12Bのコンテキストサイズは128000で、これは他の2つのモデルの16倍のサイズです。

2. 多言語性能

Mistral NeMo 12Bは多言語対応に優れています。英語はもちろん、日本語、フランス語、ドイツ語、スペイン語、イタリア語、ポルトガル語、中国語、韓国語、アラビア語、ヒンディー語など、幅広い言語で高いパフォーマンスを発揮します。

  • マルチタスク言語理解ベンチマーク「MMLU」のスコア:68%(GPT-3.5 Turboの69.8%と同等)
  • 日本語理解能力を評価したJMMLUのスコア:59%

3. 効率的なトークナイザー

新しい圧縮技術「Tekken」の採用により、自然言語テキストやソースコードの処理効率が大幅に向上しています。特に日本語では1.56倍の効率化を実現しています。

実際のチャット体験

ChatStream.netを使用して、Mistral Nemo 12Bとのチャットを試してみましょう。

以下URLで実際にチャットを試すことができます

https://chatstream.net/?model_id=mistral_nemo_instruct_2407&ws_name=chat_app

上記動画では以下のようなものを試してみました

  1. Mistral AI社について日本語で質問
  2. 同じ質問を英語で回答してもらう
  3. フランス語での回答を試す
  4. 映画「タイタニック」に関する質問
  5. ジェームズ・キャメロン監督の作品について質問
  6. 「ターミネーター2」の登場人物について質問
  7. 同じ質問を英語で行い、回答の正確性を比較

結果として、英語での回答のほうが日本語よりも正確性が高いことが分かりました。

コード生成能力

また、温度変換やリスト処理のPythonコードを生成してもらったところ、正確なコードと丁寧な説明が得られました。

モデルアーキテクチャ詳細

推論環境

今回使用した推論環境は以下のとおりです。

  • GPU:A5000
  • OS:Ubuntu
  • 推論エンジン:当社オリジナルのダイナミックバッチ・連続バッチ推論エンジン(通称"クラシックエンジン")
  • 推論サーバー:ChatStream Server
  • UI:ChatStream WebUI

ChatStream SDKを使用することで、約20分でMistral NeMo 12Bのチャット環境をインターネットに公開することができました。

まとめ

Mistral NeMo 12Bは、コンパクトなサイズながら高い性能を持つ多言語LLMです。特に大きなコンテキストサイズと効率的なトークナイザーが特徴的で、RAGなどの実践的な用途に強みを発揮しそうです。

生成AIのお悩み、LLMを活用した新規事業、LLMサービスの構築については、当社Qualitegまでお気軽にご相談ください。

Read more

自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング