革新的なコード生成LLM "Codestral Mamba 7B" を試してみた

革新的なコード生成LLM "Codestral Mamba 7B" を試してみた

今日は、2024年7月16日にリリースされた新しいコード生成LLM、"mistralai/mamba-codestral-7B-v0.1"(通称:Codestral Mamba 7B)を試してみました。

このモデルは、新しいMambaアーキテクチャを採用しており、Apache2ライセンスで公開されています。

コード生成のSOTAモデルに迫る性能

Mamba アーキテクチャを採用した Codestral 7B ですが、Human Eval で 75% を達成しており、Transformerベースのコード生成 SOTA モデルと同等のパフォーマンスを実現しています。

さらに、シーケンス長に対しての処理劣化がないため、かなり期待のできるモデル&アーキテクチャといえますね。

動画にまとめています

"mistralai/mamba-codestral-7B-v0.1" の試用レポートはこちらの動画にもまとめてありますので、よろしければ、こちらもご覧くださいませ

Codestral Mamba 7Bの特徴

  1. 無限の長さのシーケンスをモデル化する能力
  2. 長いシーケンスでも高速処理が可能
  3. Transformerベースの最高性能モデルと同等のパフォーマンス

実験内容

  1. Pythonプログラムの生成
    • 1から1000までの和の計算
    • 1から100までの偶数の表示
    • フィボナッチ数列の生成
    • 摂氏から華氏への変換
    • ランダムパスワードの生成
    • リスト内の2番目に大きい数の抽出
  2. コード補完
    • 文字列反転関数
    • 平均計算関数
    • リストのフラット化関数
    • BMI計算関数
  3. 長文指示によるコード生成
    • Mistral LLMを使用した対話型チャットの作成

結果

Codestral Mamba 7Bは、各タスクにおいて満足のいく出力をだしてくれました。プログラムの生成では正確なコードを出力し、コード補完では適切な実装を提案してくれました。長文指示に対しても、APIを使用した対話型チャットのコードを生成するなど、柔軟な対応を見せてくれていました。

まとめ

今回はCodestral Mamba 7Bのファーストルックレポートをお届けいたしました。

様々なPythonプログラムの生成や関数の補完を通じて、その性能の高さと可能性を実感することができました。

まだ、本格的なコード生成を試せていないため、これから実務レベルのコードが生成できるのか、という観点でさらに試してみたいと思います!

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング
自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング