【2024/5/14更新】LLM 推論 API 料金と推論速度

【2024/5/14更新】LLM 推論 API 料金と推論速度

LLM を API から利用するときに従量課金される料金と生成速度一覧まとめました。順次更新予定です。

【API 料金】 は 100万トークンあたりのアウトプット側 利用料を表示しています。

【生成速度】 は1秒間に何トークン生成できるかを示す " tokens/s"( tokens per second )で表示します。
(生成速度は入出力プロンプトの量・内容によって変動しますので、あくまで参考情報として表示しています)

OpenAI GPT シリーズ

  • OpenAI GPTシリーズ
    • gpt-4o、100万トークンあたり $15.00 (約2250円)、 70 tokens/s
    • gpt-4-turbo-2024-04-09: 100万トークンあたり $30.00 (約4500円)、 45 tokens/s
Credit:OpenAI
    • gpt-3.5-turbo-0125: 100万トークンあたり $1.5 (約225円)、100 tokens/sc

Amazon Bedrock

  • Amazon Bedrock
    • Claude3 Opus: 100万トークンあたり $75 (約11250円)
    • Claude3 Sonnet: 100万トークンあたり $15 (約2250円)
    • Claude3 Haiku: 100万トークンあたり $1.25(約188円)、生成速度 120 tokens/s
    • Llama3 70B: 100万トークンあたり $3.5 (約525円)、生成速度 36.5 tokens/s
    • Llama3 8B: 100万とーくんあたり 生成速度 77.8 tokens/s
credit:Amazon Bedrock

Llama3-8B-instruct を Amazon Bedrock の Playground で動作させ生成速度(tokens/sec)を確認

Llama3-70B-instruct を Amazon Bedrock の Playground で動作させ生成速度(tokens/sec)を確認

Groq

  • Groq
    • Llama3 70B: 100万トークンあたり $0.79(約119円) 、生成速度 302 tokens/s
    • Llama3 8B: 100万トークンあたり $0.1 (約15円)、生成速度 900 tokens/s
Credit:groq.com

Llama3-8B-instruct を Groq で動作させ生成速度(tokens/sec)を確認

Llama3-70B-instruct を Groq で動作させ生成速度(tokens/sec)を確認

fireworks.ai

  • fireworks.ai
    • 16Bモデル: 100万トークンあたり、$0.20 (約30円)、
      例) Llama3-8B-Instruct 269 tokens/sec
    • 80Bモデル: 100万トークンあたり、$0.90 (約135円)、
      例) Llama3-70B-Instruct 200 tokens/sec
credit:fireworks.ai

Llama3-70B-instruct を fireworks.ai で動作させ生成速度(tokens/sec)を確認

Llama3-8B-instruct を fireworks.ai で動作させ生成速度(tokens/sec)を確認

deepseek.com

  • deepseek.com
    • 236Bモデル: 100万トークンあたり、$0.28 (約42円)、
      DeepSeek-V2-Chat ≒25 tokens/sec

Deepseek V2 Chat

まとめ

2024/05/13 に GPT-4o が発表され、100万トークンあたりこれまでの GPT-4-Turboの半額となりクローズドLLMの性能・コスト競争がさらに激しくなっています。

オープンLLMでは、推論速度の点では、2024年5月現在、Groq が頭一つ抜け出ています。コストの点でもオープンな LLM の利用を前提とするならば Groq が優れています。

ただし、チューニングできるポイントやサポートの提供、過去の技術アセット、ノウハウ、人材調達の観点で総合的に判断して採用を決めるものですので採用に際しては総合的判断となるとおもいます。当社でも 上記内容ふくめ幅広い知見・経験をもとにしたLLM サービス構築コンサルティングを行っております。

LLM API を活用して最速でチャットボットを構築する

当社のLLMサービス開発ソリューション ChatStream をご利用いただくと、 LLM API を使用してノーコード・ローコードで本格的な UI を備えたチャットボットを構築可能です。(APIを使用せず、独自のオープンソースLLMをホスティング使用した推論サーバーソリューションも利用可能です)

LLMサービス開発、チャットボット開発についてご興味、ご関心のある方は以下よりお問い合わせくださいませ。
https://qualiteg.com/contact

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部