【2024/5/14更新】LLM 推論 API 料金と推論速度

【2024/5/14更新】LLM 推論 API 料金と推論速度

LLM を API から利用するときに従量課金される料金と生成速度一覧まとめました。順次更新予定です。

【API 料金】 は 100万トークンあたりのアウトプット側 利用料を表示しています。

【生成速度】 は1秒間に何トークン生成できるかを示す " tokens/s"( tokens per second )で表示します。
(生成速度は入出力プロンプトの量・内容によって変動しますので、あくまで参考情報として表示しています)

OpenAI GPT シリーズ

  • OpenAI GPTシリーズ
    • gpt-4o、100万トークンあたり $15.00 (約2250円)、 70 tokens/s
    • gpt-4-turbo-2024-04-09: 100万トークンあたり $30.00 (約4500円)、 45 tokens/s
Credit:OpenAI
    • gpt-3.5-turbo-0125: 100万トークンあたり $1.5 (約225円)、100 tokens/sc

Amazon Bedrock

  • Amazon Bedrock
    • Claude3 Opus: 100万トークンあたり $75 (約11250円)
    • Claude3 Sonnet: 100万トークンあたり $15 (約2250円)
    • Claude3 Haiku: 100万トークンあたり $1.25(約188円)、生成速度 120 tokens/s
    • Llama3 70B: 100万トークンあたり $3.5 (約525円)、生成速度 36.5 tokens/s
    • Llama3 8B: 100万とーくんあたり 生成速度 77.8 tokens/s
credit:Amazon Bedrock

Llama3-8B-instruct を Amazon Bedrock の Playground で動作させ生成速度(tokens/sec)を確認

Llama3-70B-instruct を Amazon Bedrock の Playground で動作させ生成速度(tokens/sec)を確認

Groq

  • Groq
    • Llama3 70B: 100万トークンあたり $0.79(約119円) 、生成速度 302 tokens/s
    • Llama3 8B: 100万トークンあたり $0.1 (約15円)、生成速度 900 tokens/s
Credit:groq.com

Llama3-8B-instruct を Groq で動作させ生成速度(tokens/sec)を確認

Llama3-70B-instruct を Groq で動作させ生成速度(tokens/sec)を確認

fireworks.ai

  • fireworks.ai
    • 16Bモデル: 100万トークンあたり、$0.20 (約30円)、
      例) Llama3-8B-Instruct 269 tokens/sec
    • 80Bモデル: 100万トークンあたり、$0.90 (約135円)、
      例) Llama3-70B-Instruct 200 tokens/sec
credit:fireworks.ai

Llama3-70B-instruct を fireworks.ai で動作させ生成速度(tokens/sec)を確認

Llama3-8B-instruct を fireworks.ai で動作させ生成速度(tokens/sec)を確認

deepseek.com

  • deepseek.com
    • 236Bモデル: 100万トークンあたり、$0.28 (約42円)、
      DeepSeek-V2-Chat ≒25 tokens/sec

Deepseek V2 Chat

まとめ

2024/05/13 に GPT-4o が発表され、100万トークンあたりこれまでの GPT-4-Turboの半額となりクローズドLLMの性能・コスト競争がさらに激しくなっています。

オープンLLMでは、推論速度の点では、2024年5月現在、Groq が頭一つ抜け出ています。コストの点でもオープンな LLM の利用を前提とするならば Groq が優れています。

ただし、チューニングできるポイントやサポートの提供、過去の技術アセット、ノウハウ、人材調達の観点で総合的に判断して採用を決めるものですので採用に際しては総合的判断となるとおもいます。当社でも 上記内容ふくめ幅広い知見・経験をもとにしたLLM サービス構築コンサルティングを行っております。

LLM API を活用して最速でチャットボットを構築する

当社のLLMサービス開発ソリューション ChatStream をご利用いただくと、 LLM API を使用してノーコード・ローコードで本格的な UI を備えたチャットボットを構築可能です。(APIを使用せず、独自のオープンソースLLMをホスティング使用した推論サーバーソリューションも利用可能です)

LLMサービス開発、チャットボット開発についてご興味、ご関心のある方は以下よりお問い合わせくださいませ。
https://qualiteg.com/contact

Read more

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部
Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部