【2024/5/14更新】LLM 推論 API 料金と推論速度

【2024/5/14更新】LLM 推論 API 料金と推論速度

LLM を API から利用するときに従量課金される料金と生成速度一覧まとめました。順次更新予定です。

【API 料金】 は 100万トークンあたりのアウトプット側 利用料を表示しています。

【生成速度】 は1秒間に何トークン生成できるかを示す " tokens/s"( tokens per second )で表示します。
(生成速度は入出力プロンプトの量・内容によって変動しますので、あくまで参考情報として表示しています)

OpenAI GPT シリーズ

  • OpenAI GPTシリーズ
    • gpt-4o、100万トークンあたり $15.00 (約2250円)、 70 tokens/s
    • gpt-4-turbo-2024-04-09: 100万トークンあたり $30.00 (約4500円)、 45 tokens/s
Credit:OpenAI
    • gpt-3.5-turbo-0125: 100万トークンあたり $1.5 (約225円)、100 tokens/sc

Amazon Bedrock

  • Amazon Bedrock
    • Claude3 Opus: 100万トークンあたり $75 (約11250円)
    • Claude3 Sonnet: 100万トークンあたり $15 (約2250円)
    • Claude3 Haiku: 100万トークンあたり $1.25(約188円)、生成速度 120 tokens/s
    • Llama3 70B: 100万トークンあたり $3.5 (約525円)、生成速度 36.5 tokens/s
    • Llama3 8B: 100万とーくんあたり 生成速度 77.8 tokens/s
credit:Amazon Bedrock

Llama3-8B-instruct を Amazon Bedrock の Playground で動作させ生成速度(tokens/sec)を確認

Llama3-70B-instruct を Amazon Bedrock の Playground で動作させ生成速度(tokens/sec)を確認

Groq

  • Groq
    • Llama3 70B: 100万トークンあたり $0.79(約119円) 、生成速度 302 tokens/s
    • Llama3 8B: 100万トークンあたり $0.1 (約15円)、生成速度 900 tokens/s
Credit:groq.com

Llama3-8B-instruct を Groq で動作させ生成速度(tokens/sec)を確認

Llama3-70B-instruct を Groq で動作させ生成速度(tokens/sec)を確認

fireworks.ai

  • fireworks.ai
    • 16Bモデル: 100万トークンあたり、$0.20 (約30円)、
      例) Llama3-8B-Instruct 269 tokens/sec
    • 80Bモデル: 100万トークンあたり、$0.90 (約135円)、
      例) Llama3-70B-Instruct 200 tokens/sec
credit:fireworks.ai

Llama3-70B-instruct を fireworks.ai で動作させ生成速度(tokens/sec)を確認

Llama3-8B-instruct を fireworks.ai で動作させ生成速度(tokens/sec)を確認

deepseek.com

  • deepseek.com
    • 236Bモデル: 100万トークンあたり、$0.28 (約42円)、
      DeepSeek-V2-Chat ≒25 tokens/sec

Deepseek V2 Chat

まとめ

2024/05/13 に GPT-4o が発表され、100万トークンあたりこれまでの GPT-4-Turboの半額となりクローズドLLMの性能・コスト競争がさらに激しくなっています。

オープンLLMでは、推論速度の点では、2024年5月現在、Groq が頭一つ抜け出ています。コストの点でもオープンな LLM の利用を前提とするならば Groq が優れています。

ただし、チューニングできるポイントやサポートの提供、過去の技術アセット、ノウハウ、人材調達の観点で総合的に判断して採用を決めるものですので採用に際しては総合的判断となるとおもいます。当社でも 上記内容ふくめ幅広い知見・経験をもとにしたLLM サービス構築コンサルティングを行っております。

LLM API を活用して最速でチャットボットを構築する

当社のLLMサービス開発ソリューション ChatStream をご利用いただくと、 LLM API を使用してノーコード・ローコードで本格的な UI を備えたチャットボットを構築可能です。(APIを使用せず、独自のオープンソースLLMをホスティング使用した推論サーバーソリューションも利用可能です)

LLMサービス開発、チャットボット開発についてご興味、ご関心のある方は以下よりお問い合わせくださいませ。
https://qualiteg.com/contact

Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部