Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介

Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介
Photo by Ellephant / Unsplash

2024年7月23日、Meta社が最新の大規模言語モデル、Llama 3.1シリーズを発表しました。この記事では、Llama 3.1シリーズの特徴と性能、そして実際の使用例を紹介します。

以下、動画にもまとめてありますので、あわせてごらんいただければと思います。

Llama 3.1シリーズの主な特徴

Llama 3.1シリーズは、8B、70B、405Bの3つのモデルサイズで提供されています。主な特徴は以下の通りです:

  • 一般的な知識、操縦性、数学、道具の使用、多言語翻訳におけるトップAIモデルに匹敵する初のオープンLLM
  • コンテクストは128Kトークン
  • 8言語に対応した多言語モデル(ただし日本語は含まれず)
  • 15兆以上のトークンでトレーニング

モデルサイズ別の特徴

  • 8Bモデル: モバイルデバイスや小規模なシステムでの使用に適しており、リソースが限られた環境でも高性能を発揮
  • 70Bモデル: 多くのタスクで405Bモデルに近い性能を示しながら、より少ないコンピューティングリソースで運用できる優れたバランスを提供
  • 405Bモデル: 最高レベルの性能を求める場合や、複雑なタスクを処理する際に最適

Llama 3.1 405Bモデルの性能比較

Meta社は150以上のベンチマークデータセットを用いて、これらのモデルの性能を評価しました。405Bモデルの具体的な比較結果は以下の通りです:

  1. MMLU(一般的な言語理解): 88.6点(GPT-4の85.4点を3.2ポイント上回る)
  2. HumanEval(コーディング能力): 89.0点(GPT-4の86.6点を2.4ポイント上回る)
  3. GSM8K(数学的能力): 96.8点(GPT-4 Omniの96.1点を0.7ポイント上回る)
  4. ARC Challenge(推論能力): 96.9点(GPT-4の96.4点を0.5ポイント上回る)
  5. ZeroSCROLLS/QuALITY(長文脈処理能力): 95.2点(GPT-4 OmniとClaude 3.5 Sonnetの90.5点を4.7ポイント上回る)
  6. Multilingual MGSM(多言語処理能力): 91.6点(GPT-4の85.9点を5.7ポイント上回る)

これらの結果は、Llama 3.1 405Bが多くの分野で最先端の性能を持つことを示しています。70Bと8Bモデルも、そのサイズに応じた高い性能を発揮しています。

Llama 3.1 と実際にチャットしてみましょう

当社が運営している chatstream.net にて、実際に Llama 3.1 とチャットをすることができます。

https://chatstream.net/?model_id=meta_llama_3_1_8b_instruct&ws_name=chat_app_en

総括

8Bモデルでさえ、Llama 3.1は全体としてユーザーの質問に対して多角的に答えようとする傾向が見られました。以前の8Bモデルと比較して、より賢く、行き届いた印象を受けました。

今後、Llama 3.1に対して日本語で継続事前学習されたモデルが次々とリリースされることが期待されます。AIの進化が続く中、これらの新しいモデルの登場を楽しみに待ちたいと思います。

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部