Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介

Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介
Photo by Ellephant / Unsplash

2024年7月23日、Meta社が最新の大規模言語モデル、Llama 3.1シリーズを発表しました。この記事では、Llama 3.1シリーズの特徴と性能、そして実際の使用例を紹介します。

以下、動画にもまとめてありますので、あわせてごらんいただければと思います。

Llama 3.1シリーズの主な特徴

Llama 3.1シリーズは、8B、70B、405Bの3つのモデルサイズで提供されています。主な特徴は以下の通りです:

  • 一般的な知識、操縦性、数学、道具の使用、多言語翻訳におけるトップAIモデルに匹敵する初のオープンLLM
  • コンテクストは128Kトークン
  • 8言語に対応した多言語モデル(ただし日本語は含まれず)
  • 15兆以上のトークンでトレーニング

モデルサイズ別の特徴

  • 8Bモデル: モバイルデバイスや小規模なシステムでの使用に適しており、リソースが限られた環境でも高性能を発揮
  • 70Bモデル: 多くのタスクで405Bモデルに近い性能を示しながら、より少ないコンピューティングリソースで運用できる優れたバランスを提供
  • 405Bモデル: 最高レベルの性能を求める場合や、複雑なタスクを処理する際に最適

Llama 3.1 405Bモデルの性能比較

Meta社は150以上のベンチマークデータセットを用いて、これらのモデルの性能を評価しました。405Bモデルの具体的な比較結果は以下の通りです:

  1. MMLU(一般的な言語理解): 88.6点(GPT-4の85.4点を3.2ポイント上回る)
  2. HumanEval(コーディング能力): 89.0点(GPT-4の86.6点を2.4ポイント上回る)
  3. GSM8K(数学的能力): 96.8点(GPT-4 Omniの96.1点を0.7ポイント上回る)
  4. ARC Challenge(推論能力): 96.9点(GPT-4の96.4点を0.5ポイント上回る)
  5. ZeroSCROLLS/QuALITY(長文脈処理能力): 95.2点(GPT-4 OmniとClaude 3.5 Sonnetの90.5点を4.7ポイント上回る)
  6. Multilingual MGSM(多言語処理能力): 91.6点(GPT-4の85.9点を5.7ポイント上回る)

これらの結果は、Llama 3.1 405Bが多くの分野で最先端の性能を持つことを示しています。70Bと8Bモデルも、そのサイズに応じた高い性能を発揮しています。

Llama 3.1 と実際にチャットしてみましょう

当社が運営している chatstream.net にて、実際に Llama 3.1 とチャットをすることができます。

https://chatstream.net/?model_id=meta_llama_3_1_8b_instruct&ws_name=chat_app_en

総括

8Bモデルでさえ、Llama 3.1は全体としてユーザーの質問に対して多角的に答えようとする傾向が見られました。以前の8Bモデルと比較して、より賢く、行き届いた印象を受けました。

今後、Llama 3.1に対して日本語で継続事前学習されたモデルが次々とリリースされることが期待されます。AIの進化が続く中、これらの新しいモデルの登場を楽しみに待ちたいと思います。

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部