Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介

Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介
Photo by Ellephant / Unsplash

2024年7月23日、Meta社が最新の大規模言語モデル、Llama 3.1シリーズを発表しました。この記事では、Llama 3.1シリーズの特徴と性能、そして実際の使用例を紹介します。

以下、動画にもまとめてありますので、あわせてごらんいただければと思います。

Llama 3.1シリーズの主な特徴

Llama 3.1シリーズは、8B、70B、405Bの3つのモデルサイズで提供されています。主な特徴は以下の通りです:

  • 一般的な知識、操縦性、数学、道具の使用、多言語翻訳におけるトップAIモデルに匹敵する初のオープンLLM
  • コンテクストは128Kトークン
  • 8言語に対応した多言語モデル(ただし日本語は含まれず)
  • 15兆以上のトークンでトレーニング

モデルサイズ別の特徴

  • 8Bモデル: モバイルデバイスや小規模なシステムでの使用に適しており、リソースが限られた環境でも高性能を発揮
  • 70Bモデル: 多くのタスクで405Bモデルに近い性能を示しながら、より少ないコンピューティングリソースで運用できる優れたバランスを提供
  • 405Bモデル: 最高レベルの性能を求める場合や、複雑なタスクを処理する際に最適

Llama 3.1 405Bモデルの性能比較

Meta社は150以上のベンチマークデータセットを用いて、これらのモデルの性能を評価しました。405Bモデルの具体的な比較結果は以下の通りです:

  1. MMLU(一般的な言語理解): 88.6点(GPT-4の85.4点を3.2ポイント上回る)
  2. HumanEval(コーディング能力): 89.0点(GPT-4の86.6点を2.4ポイント上回る)
  3. GSM8K(数学的能力): 96.8点(GPT-4 Omniの96.1点を0.7ポイント上回る)
  4. ARC Challenge(推論能力): 96.9点(GPT-4の96.4点を0.5ポイント上回る)
  5. ZeroSCROLLS/QuALITY(長文脈処理能力): 95.2点(GPT-4 OmniとClaude 3.5 Sonnetの90.5点を4.7ポイント上回る)
  6. Multilingual MGSM(多言語処理能力): 91.6点(GPT-4の85.9点を5.7ポイント上回る)

これらの結果は、Llama 3.1 405Bが多くの分野で最先端の性能を持つことを示しています。70Bと8Bモデルも、そのサイズに応じた高い性能を発揮しています。

Llama 3.1 と実際にチャットしてみましょう

当社が運営している chatstream.net にて、実際に Llama 3.1 とチャットをすることができます。

https://chatstream.net/?model_id=meta_llama_3_1_8b_instruct&ws_name=chat_app_en

総括

8Bモデルでさえ、Llama 3.1は全体としてユーザーの質問に対して多角的に答えようとする傾向が見られました。以前の8Bモデルと比較して、より賢く、行き届いた印象を受けました。

今後、Llama 3.1に対して日本語で継続事前学習されたモデルが次々とリリースされることが期待されます。AIの進化が続く中、これらの新しいモデルの登場を楽しみに待ちたいと思います。

Read more

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation
Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

何度か、WSL にいろんなバージョンのLinux を入れたり消したりしたときに遭遇した現象です ユーザー設定の読み込み中にエラーが発生しました 無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。"icon" を設定するときは、値が画像への有効なファイルパスとなっていることをご確認ください。 が発生するときの原因と対象法のレポートです 原因 使われなくなったゾンビ・プロファイルがWindows Terminal (のキャッシュ)に残り続ける 対処法 このメッセージを解消するには、いったん、プロファイルをリセットする必要がありました。 ※既存プロファイル設定が消える場合があるので留意すること Step1 Windows Terminal を落とす Windows Terminal をいったんすべて落とす Step2 settings.json を消す エクスプローラーで settings.json のあるフォルダに移動しファイルを削除する %LOCALAPPDATA%\Packages\Micros

By Qualiteg プロダクト開発部