[ChatSream] モデルをロードする方法

[ChatSream] モデルをロードする方法

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatStream に HuggingFaceモデルを読み込むときのアプローチについてご説明いたします

HuggingFace モデルのロード

モデルごとに指定された方法で HuggingFace モデルを読み込みます。

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

こちらは、シングルGPUを想定したときのアプローチでしたが、次にマルチGPUのときのアプローチを紹介いたします。

マルチGPUに対応したモデルの読み込み

モデルのパラメータ数が巨大な場合1枚のGPUに乗り切らない場合があります

サーバー内に複数枚のGPUがある場合は以下 load_hf_model 関数をつかい num_gpus=2 のように複数の GPU を使用してモデルを読み込むことができます。

このとき、サーバー内にGPU数が4枚あり、num_gpus=2 が指定された場合、GPU ID が若い順から 2枚が使用されます。

また、GPUの搭載メモリ量が異なる場合は max_gpu_memory を指定して、もっとも少ないメモリ量にあわせるか、 max_gpu_memory を指定しないで、
各 GPU のメモリ量に応じた量を順に割り当てていきます。このときは、"device_map": "sequential" が指定されます。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


def load_hf_model(model_path: str, device: str = "cuda", num_gpus: int = None, max_gpu_memory: str = None,
                  model_opts={}, tokenizer_opts={}):
    if device == "cpu":
        # When using Redpajama-Incite for CPU-based inference,
        # bfloat16 was recommended, but I thought it was faster to specify no bfloat16.
        kwargs = {}  # "torch_dtype": torch.bfloat16}
    elif device == "cuda":
        kwargs = {"torch_dtype": torch.float16}
        if num_gpus is None:
            num_gpus = 1
            kwargs["device_map"] = "auto"
        elif num_gpus == 1:
            pass
        elif num_gpus > 1:

            kwargs["device_map"] = "auto"

            if max_gpu_memory is None:
                kwargs["device_map"] = "sequential"

                available_gpu_memory_list = get_available_gpu_memory_list(num_gpus)

                max_memory_dict = {}
                for i in range(num_gpus):
                    memory = available_gpu_memory_list[i] * 0.85
                    memory_str = str(int(memory)) + "GiB"
                    max_memory_dict[i] = memory_str
                kwargs["max_memory"] = max_memory_dict
                # for example
                # max_memory_dict= { 0: "8GiB", 1: "10GiB", 2: "6GiB", 3: "13GiB" }
            else:
                max_memory_dict = {}
                for i in range(num_gpus):
                    max_memory_dict[i] = max_gpu_memory
                kwargs["max_memory"] = max_memory_dict


    elif device == "mps":
        kwargs = {"torch_dtype": torch.float16}
    else:
        raise ValueError(f"Invalid device: {device}")

    kwargs.update(model_opts)

    tokenizer = AutoTokenizer.from_pretrained(model_path, **tokenizer_opts)
    model = AutoModelForCausalLM.from_pretrained(model_path,
                                                 **kwargs)

    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)
    return model, tokenizer, device


def get_available_gpu_memory_list(max_gpus=None):
    available_gpu_count = torch.cuda.device_count()

    if max_gpus is None:
        num_gpus = available_gpu_count
    else:
        num_gpus = min(max_gpus, available_gpu_count)

    gpu_memory_list = []

    for gpu_id in range(num_gpus):
        with torch.cuda.device(gpu_id):
            device = torch.cuda.current_device()
            gpu_properties = torch.cuda.get_device_properties(device)
            total_memory = gpu_properties.total_memory / (1024 ** 3)
            allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
            available_memory = total_memory - allocated_memory
            gpu_memory_list.append(available_memory)
    return gpu_memory_list


Read more

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング