[ChatSream] モデルをロードする方法

[ChatSream] モデルをロードする方法

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatStream に HuggingFaceモデルを読み込むときのアプローチについてご説明いたします

HuggingFace モデルのロード

モデルごとに指定された方法で HuggingFace モデルを読み込みます。

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

こちらは、シングルGPUを想定したときのアプローチでしたが、次にマルチGPUのときのアプローチを紹介いたします。

マルチGPUに対応したモデルの読み込み

モデルのパラメータ数が巨大な場合1枚のGPUに乗り切らない場合があります

サーバー内に複数枚のGPUがある場合は以下 load_hf_model 関数をつかい num_gpus=2 のように複数の GPU を使用してモデルを読み込むことができます。

このとき、サーバー内にGPU数が4枚あり、num_gpus=2 が指定された場合、GPU ID が若い順から 2枚が使用されます。

また、GPUの搭載メモリ量が異なる場合は max_gpu_memory を指定して、もっとも少ないメモリ量にあわせるか、 max_gpu_memory を指定しないで、
各 GPU のメモリ量に応じた量を順に割り当てていきます。このときは、"device_map": "sequential" が指定されます。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


def load_hf_model(model_path: str, device: str = "cuda", num_gpus: int = None, max_gpu_memory: str = None,
                  model_opts={}, tokenizer_opts={}):
    if device == "cpu":
        # When using Redpajama-Incite for CPU-based inference,
        # bfloat16 was recommended, but I thought it was faster to specify no bfloat16.
        kwargs = {}  # "torch_dtype": torch.bfloat16}
    elif device == "cuda":
        kwargs = {"torch_dtype": torch.float16}
        if num_gpus is None:
            num_gpus = 1
            kwargs["device_map"] = "auto"
        elif num_gpus == 1:
            pass
        elif num_gpus > 1:

            kwargs["device_map"] = "auto"

            if max_gpu_memory is None:
                kwargs["device_map"] = "sequential"

                available_gpu_memory_list = get_available_gpu_memory_list(num_gpus)

                max_memory_dict = {}
                for i in range(num_gpus):
                    memory = available_gpu_memory_list[i] * 0.85
                    memory_str = str(int(memory)) + "GiB"
                    max_memory_dict[i] = memory_str
                kwargs["max_memory"] = max_memory_dict
                # for example
                # max_memory_dict= { 0: "8GiB", 1: "10GiB", 2: "6GiB", 3: "13GiB" }
            else:
                max_memory_dict = {}
                for i in range(num_gpus):
                    max_memory_dict[i] = max_gpu_memory
                kwargs["max_memory"] = max_memory_dict


    elif device == "mps":
        kwargs = {"torch_dtype": torch.float16}
    else:
        raise ValueError(f"Invalid device: {device}")

    kwargs.update(model_opts)

    tokenizer = AutoTokenizer.from_pretrained(model_path, **tokenizer_opts)
    model = AutoModelForCausalLM.from_pretrained(model_path,
                                                 **kwargs)

    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)
    return model, tokenizer, device


def get_available_gpu_memory_list(max_gpus=None):
    available_gpu_count = torch.cuda.device_count()

    if max_gpus is None:
        num_gpus = available_gpu_count
    else:
        num_gpus = min(max_gpus, available_gpu_count)

    gpu_memory_list = []

    for gpu_id in range(num_gpus):
        with torch.cuda.device(gpu_id):
            device = torch.cuda.current_device()
            gpu_properties = torch.cuda.get_device_properties(device)
            total_memory = gpu_properties.total_memory / (1024 ** 3)
            allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
            available_memory = total_memory - allocated_memory
            gpu_memory_list.append(available_memory)
    return gpu_memory_list


Read more

GPUサービスで「Segmentation Fault 」に出会ったら~分析から解決までの実践アプローチ~

GPUサービスで「Segmentation Fault 」に出会ったら~分析から解決までの実践アプローチ~

こんにちは! 今日は仮想環境+GPUなサービスにおける「Segmentation Fault」について、分析と対処法について書いてみたいと思います。 Segmentation Faultの本質と特徴 Segmentation Faultは、プログラムが保護されたメモリ領域にアクセスしようとした際にOSが発生させる例外です。 今回は複数のGPUサービス(つまりGPUを使うプロセス)が動作していて、そのうちの1つを再起動したときに発生しました。 毎回発生するわけではありません。むしろ数百回の起動に1回程度ですが、1回でも発生すると絶望的な結果につながります。というのも、1つのGPUサービスの停止が SPOF となってサービス全体に影響が発生します。かつ、1回でも「Segmentation Fault」が発生してしまうと、その原因となったプロセスが二度と起動しなくなる、というやっかいな現象でした。 このように「普段は正常に動作しているのに突然動かなくなる」というのがデバッグを非常に難しくします。 とくにGPU+仮想化の組み合わせで従来のC++アプリよりも発生確率がぐっとあがる印象

By Qualiteg プロダクト開発部
シェルスクリプトからcondaコマンドを活用したいとき

シェルスクリプトからcondaコマンドを活用したいとき

こんにちは! 今日はみんな大好きcondaコマンドについてです。 condaコマンドで仮想環境に入って、何らかの処理をして、戻ってくる ようなシェルスクリプト、バッチタスクをやるときのTipsです。 AI開発において、Anacondaとその中核であるcondaパッケージマネージャーはとっても重宝します。 しかし、シェルスクリプトから自動的にcondaを利用しようとすると、意外なハードルがあります。 本記事では、シェルスクリプトからcondaコマンドを正しく呼び出す方法について解説します。 condaと非対話モードの課題 AnacondaがインストールされているLinux環境において、condaコマンドは通常、.bashrcや.bash_profileなどの設定ファイルによって初期化されます。 なんとなくシェルをつかっていると、このcondaコマンドの初期化を忘れてしまいますが、これらの設定は多くの場合シェルの「対話モード」でのみ有効になるように設計されています。 ゆえにシェルスクリプトのような非対話モードでは、condaコマンドが正しく機能してくれません 例えば、.b

By Qualiteg プロダクト開発部
Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO