[ChatSream] モデルをロードする方法

[ChatSream] モデルをロードする方法

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatStream に HuggingFaceモデルを読み込むときのアプローチについてご説明いたします

HuggingFace モデルのロード

モデルごとに指定された方法で HuggingFace モデルを読み込みます。

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

こちらは、シングルGPUを想定したときのアプローチでしたが、次にマルチGPUのときのアプローチを紹介いたします。

マルチGPUに対応したモデルの読み込み

モデルのパラメータ数が巨大な場合1枚のGPUに乗り切らない場合があります

サーバー内に複数枚のGPUがある場合は以下 load_hf_model 関数をつかい num_gpus=2 のように複数の GPU を使用してモデルを読み込むことができます。

このとき、サーバー内にGPU数が4枚あり、num_gpus=2 が指定された場合、GPU ID が若い順から 2枚が使用されます。

また、GPUの搭載メモリ量が異なる場合は max_gpu_memory を指定して、もっとも少ないメモリ量にあわせるか、 max_gpu_memory を指定しないで、
各 GPU のメモリ量に応じた量を順に割り当てていきます。このときは、"device_map": "sequential" が指定されます。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


def load_hf_model(model_path: str, device: str = "cuda", num_gpus: int = None, max_gpu_memory: str = None,
                  model_opts={}, tokenizer_opts={}):
    if device == "cpu":
        # When using Redpajama-Incite for CPU-based inference,
        # bfloat16 was recommended, but I thought it was faster to specify no bfloat16.
        kwargs = {}  # "torch_dtype": torch.bfloat16}
    elif device == "cuda":
        kwargs = {"torch_dtype": torch.float16}
        if num_gpus is None:
            num_gpus = 1
            kwargs["device_map"] = "auto"
        elif num_gpus == 1:
            pass
        elif num_gpus > 1:

            kwargs["device_map"] = "auto"

            if max_gpu_memory is None:
                kwargs["device_map"] = "sequential"

                available_gpu_memory_list = get_available_gpu_memory_list(num_gpus)

                max_memory_dict = {}
                for i in range(num_gpus):
                    memory = available_gpu_memory_list[i] * 0.85
                    memory_str = str(int(memory)) + "GiB"
                    max_memory_dict[i] = memory_str
                kwargs["max_memory"] = max_memory_dict
                # for example
                # max_memory_dict= { 0: "8GiB", 1: "10GiB", 2: "6GiB", 3: "13GiB" }
            else:
                max_memory_dict = {}
                for i in range(num_gpus):
                    max_memory_dict[i] = max_gpu_memory
                kwargs["max_memory"] = max_memory_dict


    elif device == "mps":
        kwargs = {"torch_dtype": torch.float16}
    else:
        raise ValueError(f"Invalid device: {device}")

    kwargs.update(model_opts)

    tokenizer = AutoTokenizer.from_pretrained(model_path, **tokenizer_opts)
    model = AutoModelForCausalLM.from_pretrained(model_path,
                                                 **kwargs)

    if (device == "cuda" and num_gpus == 1) or device == "mps":
        model.to(device)
    return model, tokenizer, device


def get_available_gpu_memory_list(max_gpus=None):
    available_gpu_count = torch.cuda.device_count()

    if max_gpus is None:
        num_gpus = available_gpu_count
    else:
        num_gpus = min(max_gpus, available_gpu_count)

    gpu_memory_list = []

    for gpu_id in range(num_gpus):
        with torch.cuda.device(gpu_id):
            device = torch.cuda.current_device()
            gpu_properties = torch.cuda.get_device_properties(device)
            total_memory = gpu_properties.total_memory / (1024 ** 3)
            allocated_memory = torch.cuda.memory_allocated() / (1024 ** 3)
            available_memory = total_memory - allocated_memory
            gpu_memory_list.append(available_memory)
    return gpu_memory_list


Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部