その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは!

本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。

ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。

エラーメッセージの詳細

[E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] 
/onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 
onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : 
Failed to load library libonnxruntime_providers_cuda.so with error: 
libcudnn.so.9: cannot open shared object file: No such file or directory

エラーの原因

このエラーは以下の状況で発生します

  1. cuDNN 9が未インストール: ONNX RuntimeがCUDA 12系で動作する際に必要なcuDNN 9(libcudnn.so.9)がシステムに存在しない
  2. ライブラリパスの問題: cuDNNはインストールされているが、ONNX Runtimeから見つけられない

これはたいていWarningとしてログに出ますがほっとくとGPU推論が実行できず、CPUフォールバックまたは処理の失敗が発生します。

よくあるのがログを無視してると処理がCPUフォールバックしてることにもきづかづ異様に処理が遅くなってしまいます

「あれ~、何かこの処理遅いぞ」

とおもったら、勝手にCPUで実行されていた、っていうことがよくあります

問題の診断方法

1. システムレベルでのcuDNN確認

まずシステムレベルで cuDNNの確認をしてみましょう

# 共有ライブラリとして登録されているか確認
ldconfig -p | grep libcudnn

# 物理ファイルの存在確認
ls -l /usr/lib/x86_64-linux-gnu/libcudnn.so* 2>/dev/null

この出力が何もない場合、cuDNNがシステムに存在しないか、パスが通っていない、ということになります

2. パッケージマネージャーでの確認

次は、パッケージマネージャで確認してみましょう

APT(Ubuntu/Debian)の場合

dpkg -l | grep libcudnn

Conda環境の場合

conda activate your_environment
conda list cudnn

こちらも、何も出ない場合、cuDNNが存在しないことになります。

解決手順

方法1: Conda環境での解決(推奨)

さて、Conda環境を使用している場合、
環境内にcuDNNをインストールすることで解決できます。

# 1. Conda環境をアクティベート
conda activate your_environment

# 2. cuDNN 9.10.1.4をインストール
conda install -c conda-forge cudnn=9.10.1.4 -y

インストールされる主要パッケージ

  • cuda-nvrtc-12.9.86
  • cudnn-9.10.1.4
  • libcublas-12.9.1.4
  • libcudnn-9.10.1.4
  • libcudnn-dev-9.10.1.4

方法2: システムレベルでの解決

一方で、システム全体で使用するようにすることも可能です(Linux環境やWSL環境)

# Ubuntu/Debianの場合
sudo apt update
sudo apt install libcudnn9 libcudnn9-dev

# ライブラリパスの更新
sudo ldconfig

重要: ONNX Runtimeの再インストール

方法1か方法2でcuDNNをインストールできたら、再度onnxruntime-gpuをインストールしましょう。

cuDNNインストール後、ONNX Runtimeが新しい環境を正しく認識するよう、再インストールを行います

# 既存のパッケージをアンインストール
pip uninstall onnxruntime onnxruntime-gpu -y

# GPU版を再インストール
pip install onnxruntime-gpu

この再インストールにより、ONNX Runtimeが新しくインストールされたcuDNNライブラリを正しく検出し、リンクすることができます。

動作確認

以下のPythonスクリプトで、問題が解決したか確認できます

import onnxruntime as ort

# 利用可能なプロバイダを表示
providers = ort.get_available_providers()
print("Available providers:", providers)

# CUDAプロバイダの確認
if 'CUDAExecutionProvider' in providers:
    print("GPU推論が利用可能です")
    
    # テスト用の簡単なモデルでセッション作成を確認
    import numpy as np
    from onnxruntime import InferenceSession
    
    try:
        # セッション作成(実際のモデルパスに置き換えてください)
        session_options = ort.SessionOptions()
        providers_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        print("CUDAExecutionProviderが正常に初期化されました")
    except Exception as e:
        print(f"初期化エラー: {e}")
else:
    print("CUDAプロバイダが利用できません")

トラブルシューティング

それでも解決しない場合

たいてい上記で解決しますが、それでも解決しないときは、以下を試します

  1. バージョン互換性の確認
    CUDAとcuDNNは以下の用な関係になっています。まずバージョン互換性を確認しましょう
    • CUDA 12.x → cuDNN 9.x
    • CUDA 11.x → cuDNN 8.x
    • ONNX Runtime GPUのバージョンがCUDAバージョンと互換性があるか確認

詳細なデバッグ情報の取得

import onnxruntime as ort
ort.set_default_logger_severity(0)  # 詳細ログを有効化

環境変数の設定
環境変数を設定すると解決することがあります

export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH

CUDAバージョンの確認

nvidia-smi
nvcc --version

まとめ

ONNX RuntimeのCUDAプロバイダエラーは、主にcuDNNライブラリの不在が原因です。

Conda環境を使用している場合は、環境内にcuDNNをインストールします、
さらに、その後念には念を入れONNX Runtimeを再インストールしましょう。

これでたいていは解決するとおもいます

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg コンサルティング
使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

こんにちは、株式会社Qualiteg コンサルティング部門です。 昨今、生成AIの急速な進化により、ソフトウェア開発の在り方が根本から変わりつつあります。2024年にはClaude、GPT-4、Geminiなどの大規模言語モデルがコード生成能力を飛躍的に向上させ、GitHub CopilotやCursor、Windsurf等の開発支援ツールが実際の開発現場で広く活用されるようになりました。さらに、Devin、OpenAI Canvas、Anthropic Claude Codingといった、より高度な自律的コーディング機能を持つAIエージェントも登場しています。 このような技術革新を背景に、当部門では今後のソフトウェア産業の構造変化について詳細な分析を行いました。本シリーズでは、特に注目すべき変化として、従来1000人月規模を要していた企業向けSaaSプラットフォームや、基幹システムが、AIエージェントを効果的に活用することで、わずか2-3名のチームが数日から数週間で実装可能になるという、開発生産性の劇的な向上について考察してまいります。 これは単なる効率化ではなく、ソフトウェア

By Qualiteg コンサルティング
NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部