その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは!

本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。

ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。

エラーメッセージの詳細

[E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] 
/onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 
onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : 
Failed to load library libonnxruntime_providers_cuda.so with error: 
libcudnn.so.9: cannot open shared object file: No such file or directory

エラーの原因

このエラーは以下の状況で発生します

  1. cuDNN 9が未インストール: ONNX RuntimeがCUDA 12系で動作する際に必要なcuDNN 9(libcudnn.so.9)がシステムに存在しない
  2. ライブラリパスの問題: cuDNNはインストールされているが、ONNX Runtimeから見つけられない

これはたいていWarningとしてログに出ますがほっとくとGPU推論が実行できず、CPUフォールバックまたは処理の失敗が発生します。

よくあるのがログを無視してると処理がCPUフォールバックしてることにもきづかづ異様に処理が遅くなってしまいます

「あれ~、何かこの処理遅いぞ」

とおもったら、勝手にCPUで実行されていた、っていうことがよくあります

問題の診断方法

1. システムレベルでのcuDNN確認

まずシステムレベルで cuDNNの確認をしてみましょう

# 共有ライブラリとして登録されているか確認
ldconfig -p | grep libcudnn

# 物理ファイルの存在確認
ls -l /usr/lib/x86_64-linux-gnu/libcudnn.so* 2>/dev/null

この出力が何もない場合、cuDNNがシステムに存在しないか、パスが通っていない、ということになります

2. パッケージマネージャーでの確認

次は、パッケージマネージャで確認してみましょう

APT(Ubuntu/Debian)の場合

dpkg -l | grep libcudnn

Conda環境の場合

conda activate your_environment
conda list cudnn

こちらも、何も出ない場合、cuDNNが存在しないことになります。

解決手順

方法1: Conda環境での解決(推奨)

さて、Conda環境を使用している場合、
環境内にcuDNNをインストールすることで解決できます。

# 1. Conda環境をアクティベート
conda activate your_environment

# 2. cuDNN 9.10.1.4をインストール
conda install -c conda-forge cudnn=9.10.1.4 -y

インストールされる主要パッケージ

  • cuda-nvrtc-12.9.86
  • cudnn-9.10.1.4
  • libcublas-12.9.1.4
  • libcudnn-9.10.1.4
  • libcudnn-dev-9.10.1.4

方法2: システムレベルでの解決

一方で、システム全体で使用するようにすることも可能です(Linux環境やWSL環境)

# Ubuntu/Debianの場合
sudo apt update
sudo apt install libcudnn9 libcudnn9-dev

# ライブラリパスの更新
sudo ldconfig

重要: ONNX Runtimeの再インストール

方法1か方法2でcuDNNをインストールできたら、再度onnxruntime-gpuをインストールしましょう。

cuDNNインストール後、ONNX Runtimeが新しい環境を正しく認識するよう、再インストールを行います

# 既存のパッケージをアンインストール
pip uninstall onnxruntime onnxruntime-gpu -y

# GPU版を再インストール
pip install onnxruntime-gpu

この再インストールにより、ONNX Runtimeが新しくインストールされたcuDNNライブラリを正しく検出し、リンクすることができます。

動作確認

以下のPythonスクリプトで、問題が解決したか確認できます

import onnxruntime as ort

# 利用可能なプロバイダを表示
providers = ort.get_available_providers()
print("Available providers:", providers)

# CUDAプロバイダの確認
if 'CUDAExecutionProvider' in providers:
    print("GPU推論が利用可能です")
    
    # テスト用の簡単なモデルでセッション作成を確認
    import numpy as np
    from onnxruntime import InferenceSession
    
    try:
        # セッション作成(実際のモデルパスに置き換えてください)
        session_options = ort.SessionOptions()
        providers_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        print("CUDAExecutionProviderが正常に初期化されました")
    except Exception as e:
        print(f"初期化エラー: {e}")
else:
    print("CUDAプロバイダが利用できません")

トラブルシューティング

それでも解決しない場合

たいてい上記で解決しますが、それでも解決しないときは、以下を試します

  1. バージョン互換性の確認
    CUDAとcuDNNは以下の用な関係になっています。まずバージョン互換性を確認しましょう
    • CUDA 12.x → cuDNN 9.x
    • CUDA 11.x → cuDNN 8.x
    • ONNX Runtime GPUのバージョンがCUDAバージョンと互換性があるか確認

詳細なデバッグ情報の取得

import onnxruntime as ort
ort.set_default_logger_severity(0)  # 詳細ログを有効化

環境変数の設定
環境変数を設定すると解決することがあります

export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH

CUDAバージョンの確認

nvidia-smi
nvcc --version

まとめ

ONNX RuntimeのCUDAプロバイダエラーは、主にcuDNNライブラリの不在が原因です。

Conda環境を使用している場合は、環境内にcuDNNをインストールします、
さらに、その後念には念を入れONNX Runtimeを再インストールしましょう。

これでたいていは解決するとおもいます

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部