その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは!

本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。

ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。

エラーメッセージの詳細

[E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] 
/onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 
onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : 
Failed to load library libonnxruntime_providers_cuda.so with error: 
libcudnn.so.9: cannot open shared object file: No such file or directory

エラーの原因

このエラーは以下の状況で発生します

  1. cuDNN 9が未インストール: ONNX RuntimeがCUDA 12系で動作する際に必要なcuDNN 9(libcudnn.so.9)がシステムに存在しない
  2. ライブラリパスの問題: cuDNNはインストールされているが、ONNX Runtimeから見つけられない

これはたいていWarningとしてログに出ますがほっとくとGPU推論が実行できず、CPUフォールバックまたは処理の失敗が発生します。

よくあるのがログを無視してると処理がCPUフォールバックしてることにもきづかづ異様に処理が遅くなってしまいます

「あれ~、何かこの処理遅いぞ」

とおもったら、勝手にCPUで実行されていた、っていうことがよくあります

問題の診断方法

1. システムレベルでのcuDNN確認

まずシステムレベルで cuDNNの確認をしてみましょう

# 共有ライブラリとして登録されているか確認
ldconfig -p | grep libcudnn

# 物理ファイルの存在確認
ls -l /usr/lib/x86_64-linux-gnu/libcudnn.so* 2>/dev/null

この出力が何もない場合、cuDNNがシステムに存在しないか、パスが通っていない、ということになります

2. パッケージマネージャーでの確認

次は、パッケージマネージャで確認してみましょう

APT(Ubuntu/Debian)の場合

dpkg -l | grep libcudnn

Conda環境の場合

conda activate your_environment
conda list cudnn

こちらも、何も出ない場合、cuDNNが存在しないことになります。

解決手順

方法1: Conda環境での解決(推奨)

さて、Conda環境を使用している場合、
環境内にcuDNNをインストールすることで解決できます。

# 1. Conda環境をアクティベート
conda activate your_environment

# 2. cuDNN 9.10.1.4をインストール
conda install -c conda-forge cudnn=9.10.1.4 -y

インストールされる主要パッケージ

  • cuda-nvrtc-12.9.86
  • cudnn-9.10.1.4
  • libcublas-12.9.1.4
  • libcudnn-9.10.1.4
  • libcudnn-dev-9.10.1.4

方法2: システムレベルでの解決

一方で、システム全体で使用するようにすることも可能です(Linux環境やWSL環境)

# Ubuntu/Debianの場合
sudo apt update
sudo apt install libcudnn9 libcudnn9-dev

# ライブラリパスの更新
sudo ldconfig

重要: ONNX Runtimeの再インストール

方法1か方法2でcuDNNをインストールできたら、再度onnxruntime-gpuをインストールしましょう。

cuDNNインストール後、ONNX Runtimeが新しい環境を正しく認識するよう、再インストールを行います

# 既存のパッケージをアンインストール
pip uninstall onnxruntime onnxruntime-gpu -y

# GPU版を再インストール
pip install onnxruntime-gpu

この再インストールにより、ONNX Runtimeが新しくインストールされたcuDNNライブラリを正しく検出し、リンクすることができます。

動作確認

以下のPythonスクリプトで、問題が解決したか確認できます

import onnxruntime as ort

# 利用可能なプロバイダを表示
providers = ort.get_available_providers()
print("Available providers:", providers)

# CUDAプロバイダの確認
if 'CUDAExecutionProvider' in providers:
    print("GPU推論が利用可能です")
    
    # テスト用の簡単なモデルでセッション作成を確認
    import numpy as np
    from onnxruntime import InferenceSession
    
    try:
        # セッション作成(実際のモデルパスに置き換えてください)
        session_options = ort.SessionOptions()
        providers_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        print("CUDAExecutionProviderが正常に初期化されました")
    except Exception as e:
        print(f"初期化エラー: {e}")
else:
    print("CUDAプロバイダが利用できません")

トラブルシューティング

それでも解決しない場合

たいてい上記で解決しますが、それでも解決しないときは、以下を試します

  1. バージョン互換性の確認
    CUDAとcuDNNは以下の用な関係になっています。まずバージョン互換性を確認しましょう
    • CUDA 12.x → cuDNN 9.x
    • CUDA 11.x → cuDNN 8.x
    • ONNX Runtime GPUのバージョンがCUDAバージョンと互換性があるか確認

詳細なデバッグ情報の取得

import onnxruntime as ort
ort.set_default_logger_severity(0)  # 詳細ログを有効化

環境変数の設定
環境変数を設定すると解決することがあります

export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH

CUDAバージョンの確認

nvidia-smi
nvcc --version

まとめ

ONNX RuntimeのCUDAプロバイダエラーは、主にcuDNNライブラリの不在が原因です。

Conda環境を使用している場合は、環境内にcuDNNをインストールします、
さらに、その後念には念を入れONNX Runtimeを再インストールしましょう。

これでたいていは解決するとおもいます

Read more

(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部
CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

株式会社Qualitegは、2025年10月14日(火)~17日(金)に幕張メッセで開催される「CEATEC 2025」に出展いたします。今回の出展では、当社が開発したフォトリアリスティックAIアバター技術「MotionVox🄬」をはじめ、最新のAI技術とビジネスイノベーションソリューションをご紹介いたします。 出展概要 * 会期:2025年10月14日(火)~10月17日(金) * 会場:幕張メッセ * 出展エリア:ネクストジェネレーションパーク * ブース番号:ホール6 6H207 * CEATEC内特設サイト:https://www.ceatec.com/nj/exhibitor_detail_ja?id=1915 見どころ:最先端AI技術を体感できる特別展示 1. フォトリアルAIアバター「MotionVox🄬」 テキスト入力だけで、まるで本物の人間のような動画を生成できる革新的なAIアバターシステムです。 MotionVox🄬は自社開発している「Expression Aware🄬」技術により日本人の演者データを基に開発された、

By Qualiteg ニュース