![[AI数理]徹底的に交差エントロピー(7)](/content/images/size/w600/2024/04/ce07.png)
AI数理
[AI数理]徹底的に交差エントロピー(7)
おはようございます!(株) Qualiteg 研究部です。 今回は、交差エントロピーの計算をベクトルや行列で表現する方法について説明します! 8章 交差エントロピーとベクトル演算 そもそも、なぜ、交差エントロピーをベクトルや行列で表現したいのでしょうか? それは、実際にニューラルネットワークをコンピュータープログラムとして実装するときに、訓練データや予測値はベクトル(1次元配列)や行列(2次元配列)といったN階テンソル(N次元配列)の形式で取り扱われるからです。 なぜベクトルや行列かといえば、ニューラルネットワークの実用的な計算をするときにはデータを1件とりだしては、1件計算する のではなく、多くのデータをベクトル(1次元配列)や行列(2次元配列)やそれ以上の多次元配列に詰めたのちに、まとめてドカっと計算するからです。 (まとめてドカっと計算するのが得意な GPU があるからこそ、これだけ Deep Learning が進展した、ともいえます) そこで、今までで導出してきた交差エントロピーの計算をコンピュータで実装するときに備えて、 1次元配列 にしてみます。