TensorRT-LLM v 0.11.0.dev2024051400 の動作確認

TensorRT-LLM v 0.11.0.dev2024051400 の動作確認
Photo by Timur Garifov / Unsplash

こんにちは、株式会社 Qualiteg プロダクト開発部です!

TensorRT-LLM は FasterTransformerの後継ともいえるNVIDIA製 推論エンジンで、当社ChatStreamの推論エンジンとしても選択可能です。

vLLMと同じく新しいモデル対応が早く、既存モデルも豊富にサポートされています。

昨日 大型コミットが入りましたので動作確認をしました。(マルチモーダルモデルNeva,Kosmos2に対応など。)

TensorRT-LLM のサポートしている、モデルアーキテクチャは以下のとおりです。

LLM

Baichuan, BART, BERT, Blip2, BLOOM, ChatGLM, DBRX, FairSeq NMT, Falcon, Flan-T5, Gemma, GPT, GPT-J, GPT-Nemo, GPT-NeoX, InternLM, LLaMA, LLaMA-v2, Mamba, mBART, Mistral, MPT, mT5, OPT, Phi-1.5/Phi-2, Qwen, Qwen-VL, Replit Code, RoBERTa, SantaCoder, Skywork, Smaug, StarCoder, T5, Whisper

マルチモーダル

BLIP2 w/ OPT-2.7B, BLIP2 w/ T5-XL, CogVLM, Deplot, Fuyu, Kosmos-2, LLaVA-v1.5-7B, NeVA, Nougat family Nougat-small, Nougat-base, VILA

動作確認

安定した推論環境提供のため常に TensorRT-LLM 最新ビルドの動確をしております。今回も専用 Docker コンテナを使用して最新版の動確をしました。

今日はまず手動確認をしてみましたので、ご紹介します

TensorRT-LLMコンテナ起動。
モデルファイル等は ホストUbuntu /home/mlu/TensorRT-LLM 側に配置されている前提。

docker run --rm -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864  \
                --gpus=all \
                --volume /home/mlu/TensorRT-LLM:/code/tensorrt_llm \
                --env "CCACHE_DIR=/code/tensorrt_llm/cpp/.ccache" \
                --env "CCACHE_BASEDIR=/code/tensorrt_llm" \
                --workdir /app/tensorrt_llm \
                --hostname LLM-Inf-Dev-release \
                --name tensorrt_llm-release-mlu \
                --tmpfs /tmp:exec \
                tensorrt_llm_qs_ready

TensorRT-LLM のクイックスタートでおなじみ llama2-chat サンプルディレクトリに移動

cd /code/tensorrt_llm/examples/llama/

推論実行
浅草のオススメスポットをきいてみましょう。

python3 ../run.py --engine_dir ./llama-2-7b-engine  \
--max_output_len 1024 \
--tokenizer_dir ./meta-llama/Llama-2-7b-chat-hf \
--input_text "What are the recommended tourist spots in Asakusa?"

実行結果は以下動画にて。


(株)QualitegのChatStreamは 推論エンジンとして Classic Transformer,vLLM,DeepSpeed,TensorRT-LLM をサポートしております。

高速LLMサービング、省GPUメモリ、分散推論、量子化の要求に応じて最適な推論エンジンを選択することができます。

LLMの推論環境、サービングに関するお悩み、ご相談くださいませ

Read more

発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

1. 位置損失 (L_position) - 口の形の正確さ 時間 口の開き 正解 予測 L_position = Σᵢ wᵢ × ||y_pred - y_true||² 各時点での予測値と正解値の差を計算。重要なパラメータ(顎の開き、口の開き)には大きな重みを付けます。 jaw_open: ×2.0 mouth_open: ×2.0 その他: ×1.0 2. 速度損失 (L_velocity) - 動きの速さ 時間 速度 t→t+1 v = y[t] -

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング
自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部