PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは!

今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます

問題の状況

開発の流れは以下のようなものでした

  1. WSL環境でConda仮想環境を作成
  2. その環境をPyCharmのプロジェクトインタプリタとして設定
  3. 開発を進める中で奇妙な現象に気づく

具体的には、次のような不一致が発生していました

  • PyCharmのプロジェクト設定で表示されるpipパッケージのリスト
  • WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト

これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。

この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。

危険な「静かな失敗」

この問題の最も厄介な点は、何のエラーメッセージも表示されないことです。ユーザーにとっては全く通常通りの操作に見えるため、問題の存在に気づくことすら難しいのです。

(my_conda_env) user@wsl:~$ conda activate my_conda_env
(my_conda_env) user@wsl:~$ pip install numpy  # 成功したように見える!

上記のコマンドは一見すると成功しているように見えます。プロンプトには(my_conda_env)と表示され、pipコマンドも正常に実行されています。しかし実際には、パッケージはConda環境にはインストールされていませんでした。

これは非常にやっかいな「静かな失敗」です。

わたしは確かにConda環境内で作業していると思い込みますが、実際のパッケージインストールは全く別の場所で行われています。この問題に気づかないまま開発を続けると、後になって原因不明のエラーや環境の不一致に悩まされることになります。

原因の調査

WSL側で環境を調査したところ、問題の根本原因が判明しました:

(qualiteg_ml_dev_env) qualiteg_dev@LLM-Inf-Dev:~$ which pip
/home/qualiteg_dev/.local/bin/pip

Conda環境がアクティベートされているにもかかわらず、which pipコマンドはCondaの環境内のpipではなく、ユーザーのホームディレクトリにある.local/bin/pipを指していました。本来であれば、Conda環境内のpipが使用されるべきなのに。。

つまりいくらWSL側でpip installを実行しても、パッケージはConda環境ではなくユーザーの.localディレクトリにインストールされていたのです。一方、PyCharmは正しくConda環境のpipを使用していたため、パッケージリストに不一致が生じていました。

問題の見つけ方と検証

この「静かな失敗」に気づくには、以下のような確認作業が重要でした

  1. PyCharmとの不一致確認
    PyCharmのパッケージリストと、WSLのconda listpip listの出力を比較して、不一致があれば同様の問題が疑われます。

インストール前後のパッケージリスト比較

(my_conda_env) user@wsl:~$ conda list numpy  # インストール前
(my_conda_env) user@wsl:~$ pip install numpy
(my_conda_env) user@wsl:~$ conda list numpy  # インストール後

pip経由でインストールしたはずのパッケージがconda listに表示されない場合、問題が発生しています。

環境アクティベート後のパスの確認

(my_conda_env) user@wsl:~$ which pip

このコマンドの結果がConda環境内(例:/home/user/anaconda3/envs/my_conda_env/bin/pip)を指していない場合は警戒信号ですね。

.bashrcファイルの問題

なぜおかしな現象になるのかとおもい、

.bashrcファイルを調査したところ、PATHの設定に問題があることがわかりました

# 問題のある.bashrc設定
export PATH=$PATH:/home/qualiteg_dev/.local/bin
export PATH=~/anaconda3/bin:$PATH

# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/home/qualiteg_dev/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
    eval "$__conda_setup"
else
    if [ -f "/home/qualiteg_dev/anaconda3/etc/profile.d/conda.sh" ]; then
        . "/home/qualiteg_dev/anaconda3/etc/profile.d/conda.sh"
    else
        export PATH="/home/qualiteg_dev/anaconda3/bin:$PATH"
    fi
fi
unset __conda_setup
# <<< conda initialize <

export PATH=~/anaconda3/bin:$PATH

問題点は2つありました:

  1. .local/binのPATHが$PATH:/home/qualiteg_dev/.local/binという形で追加されており、システムパスの後ろに追加されていた
  2. Conda初期化ブロックの後に重複したPATH設定があった

これにより、Conda環境をアクティベートしても、.local/binディレクトリにあるpipが優先的に使用されてしまっていました。

問題の影響

この「静かな失敗」のせいで、いろいろ時間がかかりました

  1. 幻想的な開発環境:
    Conda環境内で作業していると思い込みますが、実際には環境の分離が機能していなかった
    シェル側でちゃんと仮想環境に入ってるのに pip install,pip uninstallを繰り返してもPyCharm側は一切変わらず
    一連のトラブルシューティングの中でPyCharmを最新版にできたのは良い副作用でした(^^;)
  2. デバッグの悪夢
    エラーメッセージが出ないため、問題の根本原因を特定するのが非常に難しくなります。「インストールしたはずのパッケージがない」「同じ環境なのに動作が異なる」といった謎のエラーに悩まされました

解決策

この問題を解決するために、具体的には以下のような方法をとりました

1. .bashrcの修正

PATHの設定順序を変更して、Conda環境のPATHが優先されるように修正します:

# 変更前
export PATH=$PATH:/home/qualiteg_dev/.local/bin

# 変更後(先頭に追加)
export PATH=/home/qualiteg_dev/.local/bin:$PATH

また、Conda初期化ブロックの後の重複したPATH設定行を削除します:

# 削除する行
export PATH=~/anaconda3/bin:$PATH

2. 明示的にPythonモジュールとしてpipを実行

最も安全で確実な方法は、常に以下の形式でpipを実行することです:

python -m pip install パッケージ名

この方法は、現在アクティブなPython環境(この場合はConda環境)に関連付けられたpipを確実に使用するため、環境の不一致問題を防ぐことができます。この習慣をつけることで、仮想環境の管理が格段に安定します。

事前の環境検証習慣

もともとWSL環境は一時的な開発環境という意識が強いため、あまり環境構築の手順について厳密に管理していなかったため、いつのまにやら .bashrc が書き換えられてしまいましたが、本来は、新しいプロジェクトを始める前に、以下の検証手順を習慣化することが重要です。

  1. PyCharmとWSLの一貫性チェック
    新しいプロジェクトを設定した後、簡単なテストパッケージをインストールして、PyCharmとWSL両方で認識されることを確認します。

環境検証コマンド(例)

# Conda環境をアクティベート
conda activate my_env

# 以下が全てConda環境内を指しているか確認
which python
which pip

# テストインストールと確認
python -m pip install pytest
conda list pytest

まとめ

WSLでConda環境を作成し、PyCharmから使用する場合の「静かな失敗」は、特にやっかいでした。
エラーメッセージが表示されないため、問題の存在に気づかないままプロジェクトを進行させ、後になって原因不明のトラブルに悩まされました。

このような問題を防ぐには、環境アクティベート後にwhich pipで使用されるpipの場所を確認する習慣(または確認ツールが良いでしょう)をつけ、可能な限りpython -m pip形式でパッケージをインストールするのがよさそうです。
また、定期的にWSLとPyCharm間のパッケージリストの一貫性を確認することで、潜在的な問題を早期に発見できますね。

Pythonの仮想環境は強力なツールですが、WSL側の管理がだらしないと、このような「静かな失敗」が発生して、自分の時間を奪ってしまいますので、注意が必要ですね!

Read more

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング