Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは!

本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です!

2週間ほど前にわりと大きな変更がありましたので、解説いたします。

はじめに

「あれ、client.count_tokens() が動かない...」

Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。

当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。

ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。

さて、Anthropic Python SDK ですが、実は、0.74.1(2025年11月20日リリース)から0.75.0(2025年11月25日リリース)にかけて大きな変更がありました。

さらに、それより前にもSDKのバージョン0.39.0(2024年11月5日リリース)でトークンカウント機能は大きく刷新されましたので、そこからの更新も本記事の対象としたいと思います。
それでは、これら変更の背景と、新しいAPIへの移行方法を解説していきます!

1.何が変わったのか

廃止されたAPI

バージョン0.38.x以前では、以下のようにトークン数を取得していました。

# 旧API(0.38.x以前)- もう動きません
client = Anthropic()
token_count = client.count_tokens("こんにちは、世界")

シンプルで使いやすいAPIでしたが、バージョン0.39.0でこの client.count_tokens()client.get_tokenizer() は完全に削除されました。

アップデート後にこれらを呼び出すと AttributeError が発生します。

なぜ廃止されたのか→マルチモーダル化に対応するため

理由はClaudeの進化にあります。Claude 3以降、モデルは画像やPDFを理解できるようになりました旧APIはテキスト専用だったため、これらマルチモーダルコンテンツのトークン数を計算できませんでした

また、システムプロンプトやツール定義など、実際のAPI呼び出しで消費される全てのトークンを正確に計算することも困難でした。

Anthropicは中途半端な互換性維持よりも、新しい設計への完全移行を選択してようですね。

2.新しいAPIの使い方

基本形

新しいAPIは client.messages.count_tokens() です。messages.create() とほぼ同じパラメータを受け付けます。

# 新API(0.75.0以降)
from anthropic import Anthropic

client = Anthropic()

response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[
        {"role": "user", "content": "こんにちは、世界"}
    ]
)

print(response.input_tokens)  # トークン数

ただ、重要な違いは三点あります。

まず、model パラメータが必須になりました。トークン化の方法はモデルによって異なるためです。

次に、テキストを直接渡すのではなくメッセージ構造として渡します。最後に、返り値が整数ではなくオブジェクトになり、.input_tokens でトークン数を取得します。

システムプロンプトやツールも計算できる

この新APIの強みは、実際のAPI呼び出しと同じ構造でトークン数を計算できる点です。

response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    system="あなたは親切なアシスタントです。",
    messages=[
        {"role": "user", "content": "こんにちは"},
        {"role": "assistant", "content": "こんにちは!何かお手伝いできますか?"},
        {"role": "user", "content": "天気を教えて"}
    ],
    tools=[
        {
            "name": "get_weather",
            "description": "天気を取得します",
            "input_schema": {
                "type": "object",
                "properties": {
                    "location": {"type": "string"}
                },
                "required": ["location"]
            }
        }
    ]
)

response.input_tokens でトークン数を取得できます

# トークン数を取得
print(response.input_tokens)  # 例: 142

システムプロンプト、会話履歴、ツール定義、全てのトークン数が正確に計算されます。

画像やPDFにも対応

マルチモーダルコンテンツのトークン数も計算できます。これが一番重要なポイントでしょう。

import base64

with open("image.png", "rb") as f:
    image_data = base64.standard_b64encode(f.read()).decode("utf-8")

response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "source": {
                        "type": "base64",
                        "media_type": "image/png",
                        "data": image_data
                    }
                },
                {"type": "text", "text": "この画像を説明してください"}
            ]
        }
    ]
)

print(response.input_tokens)  # 画像サイズに応じたトークン数が返る

3.移行の手順

ステップ1:SDKをアップデートする

まず、SDKを0.75.0以上(2025年12月9日、ブログ執筆時点で最新)にアップデートしてください。

pip install anthropic>=0.75.0

実は冒頭にも書きましたが、0.39.0から0.74.xの間は client.beta.messages.count_tokens() という形式でベータ提供されていました。

# ベータ版API(0.39.0〜0.74.x)- 2025/12/9現在は非推奨
response = client.beta.messages.count_tokens(
    betas=["token-counting-2024-11-01"],  # ベータヘッダーが必要だった
    model="claude-3-5-sonnet-20241022",
    messages=[
        {"role": "user", "content": "こんにちは"}
    ]
)
print(response.input_tokens)

0.75.0以降は正式版として client.messages.count_tokens() が使えます。ベータヘッダーの指定も不要になりました。

# 正式版API(0.75.0以降)- 現在の推奨
response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[
        {"role": "user", "content": "こんにちは"}
    ]
)
print(response.input_tokens)

ステップ2:コードを書き換える

旧コードと新コードの対応を示します。

# 旧:シンプルなテキスト
count = client.count_tokens("Hello")

# 新:メッセージ構造で渡す
response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[{"role": "user", "content": "Hello"}]
)
count = response.input_tokens

あらかじめ、こういうヘルパー関数を作っておくと移行が楽になります。

def count_tokens(client, text, model="claude-sonnet-4-5-20250929"):
    """旧APIと同じ感覚で使えるヘルパー関数"""
    response = client.messages.count_tokens(
        model=model,
        messages=[{"role": "user", "content": text}]
    )
    return response.input_tokens

ステップ3:requirements.txtを更新する

本番環境では、バージョンを明示的に固定することをお勧めします。

anthropic>=0.75.0,<1.0.0

4.FAQ

「0.39.0のままだと問題ある?」

0.39.0でも動きますが、client.beta.messages.count_tokens() という形式でベータヘッダーの指定が必要です。0.75.0以降なら正式版として安定したAPIが使えるため、こちらをお勧めします。

「APIコールとして課金されますか?」

count_tokens はAPIリクエストとしてカウントされますが、トークン課金はされません。ただし、レート制限の対象にはなる可能性があるため、大量のリクエストを送る場合は注意しましょう。

「非同期で使えますか?」

使えます。AsyncAnthropic クライアントで同じメソッドを await 付きで呼び出してください。

from anthropic import AsyncAnthropic

client = AsyncAnthropic()
response = await client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[{"role": "user", "content": "Hello"}]
)

おわりに

トークンカウントAPIの変更は、Claudeのマルチモーダル化という大きな進化に伴うものでした。マルチモーダル化は正常進化だと思っていましたが、案外APIは目の前の仕様(テキストのみのやりとり)のみ設計思想のベースにしていたことが逆に意外でしたね。

新しいAPIは、テキストだけでなく画像やPDF、ツール定義まで含めた正確なトークン数を計算できます。

移行作業は少し手間がかかりますが、より正確で実用的なトークン管理が可能になります。この機会にぜひアップデートしてみてください。

それでは、また次回お会いしましょう!

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部