Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは!

本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です!

2週間ほど前にわりと大きな変更がありましたので、解説いたします。

はじめに

「あれ、client.count_tokens() が動かない...」

Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。

当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。

ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。

さて、Anthropic Python SDK ですが、実は、0.74.1(2025年11月20日リリース)から0.75.0(2025年11月25日リリース)にかけて大きな変更がありました。

さらに、それより前にもSDKのバージョン0.39.0(2024年11月5日リリース)でトークンカウント機能は大きく刷新されましたので、そこからの更新も本記事の対象としたいと思います。
それでは、これら変更の背景と、新しいAPIへの移行方法を解説していきます!

1.何が変わったのか

廃止されたAPI

バージョン0.38.x以前では、以下のようにトークン数を取得していました。

# 旧API(0.38.x以前)- もう動きません
client = Anthropic()
token_count = client.count_tokens("こんにちは、世界")

シンプルで使いやすいAPIでしたが、バージョン0.39.0でこの client.count_tokens()client.get_tokenizer() は完全に削除されました。

アップデート後にこれらを呼び出すと AttributeError が発生します。

なぜ廃止されたのか→マルチモーダル化に対応するため

理由はClaudeの進化にあります。Claude 3以降、モデルは画像やPDFを理解できるようになりました旧APIはテキスト専用だったため、これらマルチモーダルコンテンツのトークン数を計算できませんでした

また、システムプロンプトやツール定義など、実際のAPI呼び出しで消費される全てのトークンを正確に計算することも困難でした。

Anthropicは中途半端な互換性維持よりも、新しい設計への完全移行を選択してようですね。

2.新しいAPIの使い方

基本形

新しいAPIは client.messages.count_tokens() です。messages.create() とほぼ同じパラメータを受け付けます。

# 新API(0.75.0以降)
from anthropic import Anthropic

client = Anthropic()

response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[
        {"role": "user", "content": "こんにちは、世界"}
    ]
)

print(response.input_tokens)  # トークン数

ただ、重要な違いは三点あります。

まず、model パラメータが必須になりました。トークン化の方法はモデルによって異なるためです。

次に、テキストを直接渡すのではなくメッセージ構造として渡します。最後に、返り値が整数ではなくオブジェクトになり、.input_tokens でトークン数を取得します。

システムプロンプトやツールも計算できる

この新APIの強みは、実際のAPI呼び出しと同じ構造でトークン数を計算できる点です。

response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    system="あなたは親切なアシスタントです。",
    messages=[
        {"role": "user", "content": "こんにちは"},
        {"role": "assistant", "content": "こんにちは!何かお手伝いできますか?"},
        {"role": "user", "content": "天気を教えて"}
    ],
    tools=[
        {
            "name": "get_weather",
            "description": "天気を取得します",
            "input_schema": {
                "type": "object",
                "properties": {
                    "location": {"type": "string"}
                },
                "required": ["location"]
            }
        }
    ]
)

response.input_tokens でトークン数を取得できます

# トークン数を取得
print(response.input_tokens)  # 例: 142

システムプロンプト、会話履歴、ツール定義、全てのトークン数が正確に計算されます。

画像やPDFにも対応

マルチモーダルコンテンツのトークン数も計算できます。これが一番重要なポイントでしょう。

import base64

with open("image.png", "rb") as f:
    image_data = base64.standard_b64encode(f.read()).decode("utf-8")

response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "source": {
                        "type": "base64",
                        "media_type": "image/png",
                        "data": image_data
                    }
                },
                {"type": "text", "text": "この画像を説明してください"}
            ]
        }
    ]
)

print(response.input_tokens)  # 画像サイズに応じたトークン数が返る

3.移行の手順

ステップ1:SDKをアップデートする

まず、SDKを0.75.0以上(2025年12月9日、ブログ執筆時点で最新)にアップデートしてください。

pip install anthropic>=0.75.0

実は冒頭にも書きましたが、0.39.0から0.74.xの間は client.beta.messages.count_tokens() という形式でベータ提供されていました。

# ベータ版API(0.39.0〜0.74.x)- 2025/12/9現在は非推奨
response = client.beta.messages.count_tokens(
    betas=["token-counting-2024-11-01"],  # ベータヘッダーが必要だった
    model="claude-3-5-sonnet-20241022",
    messages=[
        {"role": "user", "content": "こんにちは"}
    ]
)
print(response.input_tokens)

0.75.0以降は正式版として client.messages.count_tokens() が使えます。ベータヘッダーの指定も不要になりました。

# 正式版API(0.75.0以降)- 現在の推奨
response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[
        {"role": "user", "content": "こんにちは"}
    ]
)
print(response.input_tokens)

ステップ2:コードを書き換える

旧コードと新コードの対応を示します。

# 旧:シンプルなテキスト
count = client.count_tokens("Hello")

# 新:メッセージ構造で渡す
response = client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[{"role": "user", "content": "Hello"}]
)
count = response.input_tokens

あらかじめ、こういうヘルパー関数を作っておくと移行が楽になります。

def count_tokens(client, text, model="claude-sonnet-4-5-20250929"):
    """旧APIと同じ感覚で使えるヘルパー関数"""
    response = client.messages.count_tokens(
        model=model,
        messages=[{"role": "user", "content": text}]
    )
    return response.input_tokens

ステップ3:requirements.txtを更新する

本番環境では、バージョンを明示的に固定することをお勧めします。

anthropic>=0.75.0,<1.0.0

4.FAQ

「0.39.0のままだと問題ある?」

0.39.0でも動きますが、client.beta.messages.count_tokens() という形式でベータヘッダーの指定が必要です。0.75.0以降なら正式版として安定したAPIが使えるため、こちらをお勧めします。

「APIコールとして課金されますか?」

count_tokens はAPIリクエストとしてカウントされますが、トークン課金はされません。ただし、レート制限の対象にはなる可能性があるため、大量のリクエストを送る場合は注意しましょう。

「非同期で使えますか?」

使えます。AsyncAnthropic クライアントで同じメソッドを await 付きで呼び出してください。

from anthropic import AsyncAnthropic

client = AsyncAnthropic()
response = await client.messages.count_tokens(
    model="claude-sonnet-4-5-20250929",
    messages=[{"role": "user", "content": "Hello"}]
)

おわりに

トークンカウントAPIの変更は、Claudeのマルチモーダル化という大きな進化に伴うものでした。マルチモーダル化は正常進化だと思っていましたが、案外APIは目の前の仕様(テキストのみのやりとり)のみ設計思想のベースにしていたことが逆に意外でしたね。

新しいAPIは、テキストだけでなく画像やPDF、ツール定義まで含めた正確なトークン数を計算できます。

移行作業は少し手間がかかりますが、より正確で実用的なトークン管理が可能になります。この機会にぜひアップデートしてみてください。

それでは、また次回お会いしましょう!

Read more

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

こんにちは! Qualitegコンサルティングです! 前回の第1回では、サブスクリプションビジネスの基本構造と、LTV・ユニットエコノミクスという革命的な考え方を解説しました。「LTV > 3 × CAC」という黄金律、覚えていますか? サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイドなぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。

By Qualiteg コンサルティング
Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング