IT & AIテクノロジー

PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

PyTorch

PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

古いPyTorchコード資産を持っている会社は、昔のコードが最新のPyTorchで動かない!最新のGPUで動かない!ということに遭遇することが多いのでしょうか。 今回は、PyTorchバージョン、対応GPU Capability Level 、対応CUDAバージョンについてまとめてみます。 PyTorchがサポートするGPUの Compute Capability PyTorch バージョン サポートされる Compute Capability (SM) レベル 1.0.0 - 1.3.1 SM_35, SM_37, SM_50, SM_60, SM_61, SM_70 1.4.0 - 1.7.1 SM_37, SM_50,

By Qualiteg プロダクト開発部
【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い

NumPy/PyTorch

【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い

今日は、 unsqueeze(0) の解説しつつ、私たちがよく直面する「あるある」な問題についてもちょこっと話してみたいと思います。 「value.unsqueeze(0)」と「value[None]」 の見分けついていますか? はい、前者は主に PyTorch、後者は NumPyでの操作の違いです。 でもどちらも、ぱっとみは、先頭に新しく次元を追加する操作なので、コードをちらっとみただけではわからないことがありますよね。 なぜかというと、ディープラーニング系のプログラミングでは PyTorchのテンソルと、NumPyの配列操作がかなり入り混じるからです。 そう、今日の話題はPyTorchとNumPyのコードが入り乱れて、どっちの配列(テンソル)を扱っているのわけワカメになる問題です。 ちなみに、話題のテーマをブラさないように PyTorchでは 先頭に新しい次元を追加するときに unsqueeze(0) だけでなく [None] も使えてしまいますが、いったん[None]は NumPy で主に使用する操作という前提で説明させてくださいませ。^^; これに対する当

By Qualiteg プロダクト開発部
【極めればこのテンソル操作 】reshape(N,-1)

NumPy/PyTorch

【極めればこのテンソル操作 】reshape(N,-1)

NumPy reshape: データ形状を自在に操る方法 NumPyのreshape関数は、多次元配列の形状を変更する強力なツールです。この記事では、reshapeの基本的な使い方から応用まで、具体例を交えて詳しく解説します。 1. reshape の基本 reshapeは、配列の要素数を変えずに形状を変更します。 import numpy as np # 1次元配列を作成 arr = np.array([1, 2, 3, 4, 5, 6]) print("Original array:", arr) print("Shape:", arr.shape) # 2x3の2次元配列に変形 reshaped = arr.reshape(2, 3) print("\nReshaped to 2x3:

By Qualiteg プロダクト開発部
【極めればこのテンソル操作】permute(1,0)

NumPy/PyTorch

【極めればこのテンソル操作】permute(1,0)

本記事はPyTorch,NumPy でよくつかうテンソル操作を、頭でしっかりイメージできるようにするための機械学習エンジニア初心者向けシリーズです! 「厳密な正しさ」をもとめるリファレンス的なものではなく、現場でつかうソースコードに頻出するコードで覚えていきましょう。 今日は permute (1,0) permute操作は、テンソルの次元の順序を変更するためによく使用されます。permuteメソッドの引数は、並び替えの順番を指定します。 permute(1,0)は2次元のテンソルにおいては、「転置」テンソルを作る役割を果たします。なぜそうなのか、順を追ってみていきましょう! それでは早速以下のような 2×3 なテンソルを考えてみましょう このテンソルは2次元なので、表で表現できますね。 このとき、このテンソルは PyTorchでは以下のように定義できます。 import torch x = torch.tensor([[1, 2, 3], [4, 5, 6]]) このテンソルの「形状」は、上でもかいたとおり 2 × 3 です

By Qualiteg プロダクト開発部
LLM-Audit ~LLMへの攻撃と防衛の最前線 ~

LLM セキュリティ

LLM-Audit ~LLMへの攻撃と防衛の最前線 ~

はじめに 人工知能技術の急速な進化により、大規模言語モデル(LLM)は多くの企業や組織にとって不可欠なツールとなっています。自然言語処理、コード生成、データ分析など、LLMの応用範囲は日々拡大し、ビジネスプロセスの効率化や創造的タスクの支援など、幅広い分野で革新をもたらしています。しかし、この革新的な技術の普及に伴い、新たなセキュリティリスクも浮上しており、企業はこれらのリスクに対する適切な対策を講じる必要に迫られています。 本記事では、当社が開発したLLMセキュリティソリューション「LLM-Audit」をご紹介します。LLM-Auditは、LLMの入力と出力を徹底的に監査し、セキュリティリスクを最小限に抑える包括的なセキュリティ&セーフティ実現ソリューションです。 従来のセキュリティ対策では対応が難しいLLM特有の脆弱性や、日本語環境特有の課題に対しても高度な保護を提供します。 動画 本記事の内容はこちらの動画でもご覧いただけます。 LLMセキュリティの重要性 LLMのセキュリティ管理が不十分な場合、企業は深刻な結果に直面する可能性があります。 最も懸

By Qualiteg プロダクト開発部
【LLMセキュリティ】ハルシネーションの検出方法

LLM セキュリティ

【LLMセキュリティ】ハルシネーションの検出方法

こんにちは、Qualiteg研究部です。 本日は、RAGにおけるハルシネーション検出に関する、こちらの論文について解説をしつつ、ハルシネーション検出をおこなうLLMについて考察をしてみたいと思います。 "Lynx: An Open Source Hallucination Evaluation Model" https://arxiv.org/pdf/2407.08488 概要 LYNXという、RAG(Retrieval Augmented Generation) システムにおいて参照なしで高品質なハルシネーション検出が可能なオープンソースのLLMの構築方法、仕組みに関する論文です。 RAGシーンにおいて、LLMが生成する回答が、質問やコンテキストに対して「忠実」であるかどうかを判定することで、ハルシネーションを検出することができます。 研究の成果である、ハルシネーション判定のために llama3ファインチューニングがほどこされたモデルは 以下に公開されています。 https://huggingface.co/PatronusAI/Llama-3-Patronus-Lynx

By Qualiteg 研究部
Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介

LLM

Meta社が発表した最新の大規模言語モデル、Llama 3.1シリーズの紹介

2024年7月23日、Meta社が最新の大規模言語モデル、Llama 3.1シリーズを発表しました。この記事では、Llama 3.1シリーズの特徴と性能、そして実際の使用例を紹介します。 以下、動画にもまとめてありますので、あわせてごらんいただければと思います。 Llama 3.1シリーズの主な特徴 Llama 3.1シリーズは、8B、70B、405Bの3つのモデルサイズで提供されています。主な特徴は以下の通りです: * 一般的な知識、操縦性、数学、道具の使用、多言語翻訳におけるトップAIモデルに匹敵する初のオープンLLM * コンテクストは128Kトークン * 8言語に対応した多言語モデル(ただし日本語は含まれず) * 15兆以上のトークンでトレーニング モデルサイズ別の特徴 * 8Bモデル: モバイルデバイスや小規模なシステムでの使用に適しており、リソースが限られた環境でも高性能を発揮 * 70Bモデル: 多くのタスクで405Bモデルに近い性能を示しながら、より少ないコンピューティングリソースで運用できる優れたバランスを提供 * 405Bモデル: 最高

By Qualiteg プロダクト開発部
革新的なコード生成LLM "Codestral Mamba 7B" を試してみた

LLM

革新的なコード生成LLM "Codestral Mamba 7B" を試してみた

今日は、2024年7月16日にリリースされた新しいコード生成LLM、"mistralai/mamba-codestral-7B-v0.1"(通称:Codestral Mamba 7B)を試してみました。 このモデルは、新しいMambaアーキテクチャを採用しており、Apache2ライセンスで公開されています。 コード生成のSOTAモデルに迫る性能 Mamba アーキテクチャを採用した Codestral 7B ですが、Human Eval で 75% を達成しており、Transformerベースのコード生成 SOTA モデルと同等のパフォーマンスを実現しています。 さらに、シーケンス長に対しての処理劣化がないため、かなり期待のできるモデル&アーキテクチャといえますね。 動画にまとめています "mistralai/mamba-codestral-7B-v0.1" の試用レポートはこちらの動画にもまとめてありますので、よろしければ、こちらもご覧くださいませ Codestral Mamba 7Bの特徴 1. 無限の長さのシーケンスをモデル化する能力 2. 長いシー

By Qualiteg プロダクト開発部
CyberAgentLM3-22B-Chat(cyberagent/calm3-22b-chat) 徹底解説

ChatStream

CyberAgentLM3-22B-Chat(cyberagent/calm3-22b-chat) 徹底解説

こんにちは、(株)Qualiteg プロダクト開発部です。 本日は昨日プレスリリースされた サイバーエージェント社の最新LLM CyberAgentLM3-22B-Chat(cyberagent/calm3-22b-chat) について、ファーストルックレポートを行います。 デモ 実際に、以下サイトで calm3-22b-chat とチャットお試し可能です https://chatstream.net/?ws_name=chat_app&mult=0&ontp=1&isync=1&model_id=calm3_22b_chat オープン・フルスクラッチモデルでリーダーボード最高評価 本モデルは、このモデルは、既存モデルをベースに用いずスクラッチで開発を行なった225億パラメータのモデルで Nejumi LLM リーダーボード3の総合評価で 700億パラメータのMeta-Llama-3-70B-Instructと同等性能となっているようです。 継続事前学習ではなく、フルスクラッチの日本語LLMという点にも注目です。 以下は日本語LLMリーダーボード1

By Qualiteg プロダクト開発部
ChatStream🄬でLlama-3-Elyza-JP-8B を動かす

ChatStream

ChatStream🄬でLlama-3-Elyza-JP-8B を動かす

こんにちは、本日は Llama-3-Elyza-JP-8B を使ってみました。 昨日 2024年6月26日に発表(https://prtimes.jp/main/html/rd/p/000000046.000047565.html)された Llama-3-Elyza-JP-8B は 70B 版では「GPT-4」を上回る性能の日本語LLMといわれています。 今回、当社でも Playground 環境に Llama-3-Elyza-JP-8B を搭載して試してみましたのでご紹介します。 70B(700億パラメータ)版は GPT-4 を上回るとのことですので、8B(80億パラメータ)版はGPT-3.5 と比較してみることにいたしました。 (性能比較は https://note.com/elyza/n/n360b6084fdbd の記事に詳しく書いてあります。) AWQ量子化版を使用してみる 今回は、A4000

By Qualiteg プロダクト開発部
推論速度を向上させる Speculative Decoding(投機的デコーディング)とは

IT & AIテクノロジー

推論速度を向上させる Speculative Decoding(投機的デコーディング)とは

こんにちは Qualiteg 研究部です。 投機的デコーディングとは何か? 投機的デコーディングは、大規模言語モデル(LLM)の推論速度を向上させる技術です。 たいていのモデルを1.4~2.0倍程度、高速化できることが報告されています。 このアプローチでは、小さなモデル(ドラフトモデル)を使用して初期の予測を行い、その結果を大きなモデル(ターゲットモデル)が検証することで、全体の推論プロセスを高速化します。 ざっくりいうと、 大きなモデルは計算負荷も高く計算速度も遅いので、まず、小さなモデルで高速に計算したあとで、その計算結果をうまくつかって大きなモデルでの計算負荷をさげ、スピードを向上させようというアイデアです。 基本的に大きなモデルと、小さなモデルはサイズ以外は基本的にまったく同じネットワーク構造をしていることが前提となります。 たとえば 70Bの Llama3 と 8B の Llama3 を組み合わせてつかうイメージです。 当然70B の Llama3 の推論計算のほうが 8B よりも重たくなりますので、小さい8BのLlama3 で先回りして推論計算することで

By Qualiteg 研究部
[自作日記20] SW編: コードをGPUで動かす

GPUマシン自作

[自作日記20] SW編: コードをGPUで動かす

早速、GPUで Pythonコードを動かしてみましょう 4.3 Jupyter Notebook で GPUを活用したPytorchコードを記述する STEP1 端末(ターミナル)を開いて、PyTorchプロジェクト用のディレクトリを作る 以下のコマンドを入力します mkdir pytorch_pj cd pytorch_pj STEP2 Jupyter Notebook の起動 ディレクトリに移動したら jupyter notebook でJupyter Notebook(ジュピターノートブック)を起動します Jupyter Notebook はPythonのコード作成と実行、実行結果表示、自由コメント(Markdown)編集の3つの機能をそなえたツールで、気軽に利用できるので、Jupyter Notebook上で試してみましょう Jupyter Notebook が起動しました 右上の 新規 をクリックして Python3 を選択します

By Qualiteg Boot Camp
[AI数理]徹底的に交差エントロピー(7)

AI数理

[AI数理]徹底的に交差エントロピー(7)

おはようございます!(株) Qualiteg 研究部です。 今回は、交差エントロピーの計算をベクトルや行列で表現する方法について説明します! 8章 交差エントロピーとベクトル演算 そもそも、なぜ、交差エントロピーをベクトルや行列で表現したいのでしょうか? それは、実際にニューラルネットワークをコンピュータープログラムとして実装するときに、訓練データや予測値はベクトル(1次元配列)や行列(2次元配列)といったN階テンソル(N次元配列)の形式で取り扱われるからです。 なぜベクトルや行列かといえば、ニューラルネットワークの実用的な計算をするときにはデータを1件とりだしては、1件計算する のではなく、多くのデータをベクトル(1次元配列)や行列(2次元配列)やそれ以上の多次元配列に詰めたのちに、まとめてドカっと計算するからです。 (まとめてドカっと計算するのが得意な GPU があるからこそ、これだけ Deep Learning が進展した、ともいえます) そこで、今までで導出してきた交差エントロピーの計算をコンピュータで実装するときに備えて、 1次元配列 にしてみます。

By Qualiteg 研究部
LLMサンプリングにおける3つのペナルティ

ChatStream Guide

LLMサンプリングにおける3つのペナルティ

[付録]ペナルティの比較 ペナルティタイプ 目的 適用方法 ペナルティの例 Repetition Penalty 特定のトークンやフレーズが繰り返されるのを防ぐ。 過去に生成されたすべてのトークンのログ確率(logits)に対してペナルティを適用する。 例えば、あるトークンがすでに生成された場合、そのトークンのログ確率をペナルティ値で割る(乗算)か、ペナルティ値を引く(減算)。 Frequency Penalty 生成されたトークンの出現頻度に基づいてペナルティを適用し、頻繁に出現するトークンを抑制する。 各トークンが生成された回数に基づいてペナルティを適用する。トークンが出現するたびに、そのトークンの出現確率を低減させる。 トークンが出現するたびに、そのトークンのログ確率をペナルティ値で累積的に割る(乗算)か、ペナルティ値を累積的に引く(減算)。 Presence Penalty すでに生成されたトークンが再度出現するのを防ぐ。 トークンが一度でも生成されたかどうかに基づいてペナルティを適用する。一度生成されたトークンには再出現の際にペナルティが適用さ

By Qualiteg プロダクト開発部
Google Gemini 1.5 API の機能、特徴、価格と使い方

IT & AIテクノロジー

Google Gemini 1.5 API の機能、特徴、価格と使い方

こんにちは!(株)Qualiteg テックブログです! 【2024年7月2日更新版】 本日は Google Gemini 1.5 Pro/ Gemini 1.5 Flash モデルの特徴、価格、Pythonをつかったテキスト生成について解説いたします。 Google Gemini とは Google Geminiは、Googleが提供する生成AIプラットフォームです。高品質なテキスト生成を行うためのAPIを提供し、さまざまなアプリケーションで自然な言語生成を利用できます。Geminiは多くの業界で使用されており、コンテンツ作成、カスタマーサポート、チャットボット、マーケティング、教育など、幅広い用途に対応しています。 APIキーの取得方法 Google Geminiを利用するためには、APIキーが必要です。以下の手順でAPIキーを取得できます。 Google AI Studio にアクセスして、手順にしたがい、Get API key でAPIキーを作成します。 https://aistudio.google.

By Qualiteg 研究部
[自作日記19] SW編: CUDA と Pytorch の導入

GPUマシン自作

[自作日記19] SW編: CUDA と Pytorch の導入

今回は CUDA と Pytorch をインストールします 4.2 CUDA(+cuDNN) と Pytorch の同時インストール Pytorch をインストールすると、CUDA と cuDNN を一緒にインストールしてくれるので、それを活用しましょう STEP1 PyTorchのインストールコマンドを生成する さて、ようやくお膳立てができたので、いよいよ機械学習ライブラリ PyTorch を導入しましょう ■ PyTorchのインストール 以下にあるPyTorchのインストールガイドを開き、 https://pytorch.org/get-started/locally/ 以下のように選択式で Pytorch のインストールコマンドを生成することができます Category Selected Pytorch Build Stable (1.13.1) Your OS Linux Package Conda Language

By Qualiteg Boot Camp