AI数理
[AI数理]徹底的に交差エントロピー(1)
おはようございます!(株) Qualiteg 研究部です。 今日からは交差エントロピーについて、徹底的に学んでいきたいとおもいます。 交差エントロピー関数の式は2つあるの? 本シリーズではは、機械学習で分類問題の損失関数としてよく使用される交差エントロピー関数をとりあげます。 実はこれまで学んできた 指数関数や対数関数の微分法は、この交差エントロピー関数を深く理解するためのものでした。 交差エントロピーがどのような性質をもっていて、どのように導かれていくのかを理解するのは今後のLLMの仕組み解明でも大いに役立つのでしっかりみていきたいとおもいます! さて、さっそくですが、 下の \((1)\) は 交差エントロピー関数 です $$ \ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1} $$ 下の \((2)\) も、 交差エントロピー関数 です。 $$ \ - \frac{1}{N} \sum_{i}